참고문헌
- Adler, R. J. (1990). An introduction to continuity, extrema, and related topics for general Gaussian processes, Lecture notes 12, Institute of Mathematical Statistics
- Baringhaus, L., and Henze, N. (1988). A consistent test for multivariate normality based on the empirical characteristic function, Metrika, Vol. 35, 339-348 https://doi.org/10.1007/BF02613322
- Baringhaus, L., and Henze, N. (1992). Limit distribution for Mardia's measure of multivariate skewness, The Annals of Statistics, Vol. 20, 1889-1902 https://doi.org/10.1214/aos/1176348894
- Billingsley, P. (968). Convergence of Probability Measures, John Wiley, New York
- Csorg o, M. (1983). Quantile processes with statistical applications, CBMS-NSF regional conference series in applied mathematics
- Csorg o, S. (1989). Consistency of some tests for multivariate normality, Metrika, Vol. 36, 107-116 https://doi.org/10.1007/BF02614082
- Csorg o, M., and Revesz, P. (1981). Strong approximations in probability and statistics, Academic Press, New York
- D' Agositno, R. B., and Stephens, M. A. (1986). Goodness-of-fit Techniques, Marcel Dekker, New York
-
del Barrio, E., Cuesta, J. A., Matran, C., and Rodriguez, J. M. (1999). Tests of goodness of fit based on the
$L_2-Wasserstein$ distance, The Annals oj Statistics, Vol. 27, 1230-1239 https://doi.org/10.1214/aos/1017938923 - de Wet, T., and Venter, J. H. (1972). Asymptotic distributions of certain test criteria of normality, South African Statistical Journal, Vol. 6, 135-149
- de Wet, T., Venter, J. H., and van Wyk, J. W. J. (1979). The null distributions of some test criteria of multivariate normality, South African Statistical Journal, Vol. 13, 153-176
- Epps, T. W., and Pulley, I. B. (1983). A test for normality based on the empirical characteristic function, Biometrika, Vol. 70, 723-726 https://doi.org/10.1093/biomet/70.3.723
- Fattorini, L. (1986). Remarks on the use of the Shapiro-Wilk statistic for testing multivariate normality, Statistica, Vol. 46, 209-217
- Finney, R. L., and Thomas, G. B, Jr. (1994). Calculus, Addison-Wesley
- Henze, N. (2002). Invariant tests for multivariate normality: A critical review, Statistical Papers, Vol. 43, 467-506 https://doi.org/10.1007/s00362-002-0119-6
- Henze, N., and Wagner, T. (1997). A new approach to the BHEP tests for multivariate normality, Journal of Multivariate Analysis, Vol. 62, 1-23 https://doi.org/10.1006/jmva.1997.1684
- Henze, N., and Zirkler, H. (1990). A class of invariant and consistent tests for multivariate normality, Communications in Statistics -Theory and Methods, Vol. 19, 3539-3617 https://doi.org/10.1080/03610929008830396
- Horswell, R. L., and Looney, S. W. (1992). A comparison of tests for multivariate normality that are based on measures of multivariate skewness and kurtosis, Journal of Statistical Computation and Simulation, Vol. 42, 21-38 https://doi.org/10.1080/00949659208811407
- Kim, N. (1994). Goodness of fit tests for bivariate distributions, Ph. D. dissertation, University of California, Berkeley
- Kim, N. (2004). An approximate Shapiro-Wilk statistic for testing multivariate normality, The Korean Journal of Applied statistics, Vol. 17, 35-37 https://doi.org/10.5351/KJAS.2004.17.1.035
- Kim, N., and Bickel, P. J (2003). The limit distribution of a test statistic for bivariate normality, Statistica Sinica, Vol. 13, 327-349
- Leslie, J. R., Stephens, M. A., and Fotopolous, S. (1986). Asymptotic distribution of the Shapiro-Wilk W for testing for normality, The Annals of Statistics, Vol. 14, 1497-1506 https://doi.org/10.1214/aos/1176350172
- Liang, J., Li, R., Fang, H., and Fang, K.-T. (2000). Testing multinormality based on low-dimensional projection, Journal Statistical planning and Inference, Vol. 86, 129-141 https://doi.org/10.1016/S0378-3758(99)00168-8
- Machado, S. G. (1983). Two statistics for testing for multivariate normality, Biometrika, Vol. 70, 713-718 https://doi.org/10.1093/biomet/70.3.713
- Malkovich, J. F., and Afifi, A. A. (1973). On tests for multivariate normality, Journal of the American Statistical Association, Vol. 68, 176-179 https://doi.org/10.2307/2284163
- Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications, Biometrika, Vol. 57, 519-530 https://doi.org/10.1093/biomet/57.3.519
- Mardia, K. V. (1974). Applications of some measures of multivariate skewness and kurtosis for testing normality and robustness studies, Sankhya A, Vol. 36, 115-128
-
Mardia, K. V. (1975). Assessment of multinormality and the robustness of Hotelling's
$T^2$ test, Applied Statistics, Vol. 24, 163-171 https://doi.org/10.2307/2346563 - Massart, P. (1989). Strong approximation for multivarite empirical and related processes, via KMT constructions, The Annals of probability, Vol. 17, 266-291 https://doi.org/10.1214/aop/1176991508
- Romeu, J. L., and Ozturk, A. (1993). A comparative study of goodness-of-fit tests for multivariate normality, Journal of Multivariate analysis, Vol. 46, 309-334 https://doi.org/10.1006/jmva.1993.1063
- Roy, S. N. (1953). On a heuristic method of test construction and its use in multivariate analysis, Annals of Mathematical Statistics, Vol. 24, 220-238 https://doi.org/10.1214/aoms/1177729029
- Shapiro, S. S., and Wilk, M. B. (1965). An analysis of variance test for normality (complete samples), Biometrika, Vol. 52, 591-611 https://doi.org/10.1093/biomet/52.3-4.591
- Thode, Jr. H. C. (2002). Testing for Normality. Marcel Dekker, New York
- Zhu, L., Fang, K. T., and Bhatti, M. I. (1997). On estimated projection pursuit Crame r-von Mises statistics, Journal of Multivariate Analysis, Vol. 63, 1-14 https://doi.org/10.1006/jmva.1997.1673
- Zhu, L., Wong, H. L., and Fang, K. (1995). A test for multivariate normality based on sample entropy and projection pursuit, Journal of Statistical Planning and Inference, Vol. 45, 373-385 https://doi.org/10.1016/0378-3758(94)00058-4
피인용 문헌
- Tests Based on Skewness and Kurtosis for Multivariate Normality vol.22, pp.4, 2015, https://doi.org/10.5351/CSAM.2015.22.4.361