DOI QR코드

DOI QR Code

The Limit Distribution of an Invariant Test Statistic for Multivariate Normality

  • Kim Namhyun (Department of Science, Hongik University)
  • Published : 2005.04.01

Abstract

Testing for normality has always been an important part of statistical methodology. In this paper a test statistic for multivariate normality is proposed. The underlying idea is to investigate all the possible linear combinations that reduce to the standard normal distribution under the null hypothesis and compare the order statistics of them with the theoretical normal quantiles. The suggested statistic is invariant with respect to nonsingular matrix multiplication and vector addition. We show that the limit distribution of an approximation to the suggested statistic is representable as the supremum over an index set of the integral of a suitable Gaussian process.

Keywords

References

  1. Adler, R. J. (1990). An introduction to continuity, extrema, and related topics for general Gaussian processes, Lecture notes 12, Institute of Mathematical Statistics
  2. Baringhaus, L., and Henze, N. (1988). A consistent test for multivariate normality based on the empirical characteristic function, Metrika, Vol. 35, 339-348 https://doi.org/10.1007/BF02613322
  3. Baringhaus, L., and Henze, N. (1992). Limit distribution for Mardia's measure of multivariate skewness, The Annals of Statistics, Vol. 20, 1889-1902 https://doi.org/10.1214/aos/1176348894
  4. Billingsley, P. (968). Convergence of Probability Measures, John Wiley, New York
  5. Csorg o, M. (1983). Quantile processes with statistical applications, CBMS-NSF regional conference series in applied mathematics
  6. Csorg o, S. (1989). Consistency of some tests for multivariate normality, Metrika, Vol. 36, 107-116 https://doi.org/10.1007/BF02614082
  7. Csorg o, M., and Revesz, P. (1981). Strong approximations in probability and statistics, Academic Press, New York
  8. D' Agositno, R. B., and Stephens, M. A. (1986). Goodness-of-fit Techniques, Marcel Dekker, New York
  9. del Barrio, E., Cuesta, J. A., Matran, C., and Rodriguez, J. M. (1999). Tests of goodness of fit based on the $L_2-Wasserstein$ distance, The Annals oj Statistics, Vol. 27, 1230-1239 https://doi.org/10.1214/aos/1017938923
  10. de Wet, T., and Venter, J. H. (1972). Asymptotic distributions of certain test criteria of normality, South African Statistical Journal, Vol. 6, 135-149
  11. de Wet, T., Venter, J. H., and van Wyk, J. W. J. (1979). The null distributions of some test criteria of multivariate normality, South African Statistical Journal, Vol. 13, 153-176
  12. Epps, T. W., and Pulley, I. B. (1983). A test for normality based on the empirical characteristic function, Biometrika, Vol. 70, 723-726 https://doi.org/10.1093/biomet/70.3.723
  13. Fattorini, L. (1986). Remarks on the use of the Shapiro-Wilk statistic for testing multivariate normality, Statistica, Vol. 46, 209-217
  14. Finney, R. L., and Thomas, G. B, Jr. (1994). Calculus, Addison-Wesley
  15. Henze, N. (2002). Invariant tests for multivariate normality: A critical review, Statistical Papers, Vol. 43, 467-506 https://doi.org/10.1007/s00362-002-0119-6
  16. Henze, N., and Wagner, T. (1997). A new approach to the BHEP tests for multivariate normality, Journal of Multivariate Analysis, Vol. 62, 1-23 https://doi.org/10.1006/jmva.1997.1684
  17. Henze, N., and Zirkler, H. (1990). A class of invariant and consistent tests for multivariate normality, Communications in Statistics -Theory and Methods, Vol. 19, 3539-3617 https://doi.org/10.1080/03610929008830396
  18. Horswell, R. L., and Looney, S. W. (1992). A comparison of tests for multivariate normality that are based on measures of multivariate skewness and kurtosis, Journal of Statistical Computation and Simulation, Vol. 42, 21-38 https://doi.org/10.1080/00949659208811407
  19. Kim, N. (1994). Goodness of fit tests for bivariate distributions, Ph. D. dissertation, University of California, Berkeley
  20. Kim, N. (2004). An approximate Shapiro-Wilk statistic for testing multivariate normality, The Korean Journal of Applied statistics, Vol. 17, 35-37 https://doi.org/10.5351/KJAS.2004.17.1.035
  21. Kim, N., and Bickel, P. J (2003). The limit distribution of a test statistic for bivariate normality, Statistica Sinica, Vol. 13, 327-349
  22. Leslie, J. R., Stephens, M. A., and Fotopolous, S. (1986). Asymptotic distribution of the Shapiro-Wilk W for testing for normality, The Annals of Statistics, Vol. 14, 1497-1506 https://doi.org/10.1214/aos/1176350172
  23. Liang, J., Li, R., Fang, H., and Fang, K.-T. (2000). Testing multinormality based on low-dimensional projection, Journal Statistical planning and Inference, Vol. 86, 129-141 https://doi.org/10.1016/S0378-3758(99)00168-8
  24. Machado, S. G. (1983). Two statistics for testing for multivariate normality, Biometrika, Vol. 70, 713-718 https://doi.org/10.1093/biomet/70.3.713
  25. Malkovich, J. F., and Afifi, A. A. (1973). On tests for multivariate normality, Journal of the American Statistical Association, Vol. 68, 176-179 https://doi.org/10.2307/2284163
  26. Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications, Biometrika, Vol. 57, 519-530 https://doi.org/10.1093/biomet/57.3.519
  27. Mardia, K. V. (1974). Applications of some measures of multivariate skewness and kurtosis for testing normality and robustness studies, Sankhya A, Vol. 36, 115-128
  28. Mardia, K. V. (1975). Assessment of multinormality and the robustness of Hotelling's $T^2$ test, Applied Statistics, Vol. 24, 163-171 https://doi.org/10.2307/2346563
  29. Massart, P. (1989). Strong approximation for multivarite empirical and related processes, via KMT constructions, The Annals of probability, Vol. 17, 266-291 https://doi.org/10.1214/aop/1176991508
  30. Romeu, J. L., and Ozturk, A. (1993). A comparative study of goodness-of-fit tests for multivariate normality, Journal of Multivariate analysis, Vol. 46, 309-334 https://doi.org/10.1006/jmva.1993.1063
  31. Roy, S. N. (1953). On a heuristic method of test construction and its use in multivariate analysis, Annals of Mathematical Statistics, Vol. 24, 220-238 https://doi.org/10.1214/aoms/1177729029
  32. Shapiro, S. S., and Wilk, M. B. (1965). An analysis of variance test for normality (complete samples), Biometrika, Vol. 52, 591-611 https://doi.org/10.1093/biomet/52.3-4.591
  33. Thode, Jr. H. C. (2002). Testing for Normality. Marcel Dekker, New York
  34. Zhu, L., Fang, K. T., and Bhatti, M. I. (1997). On estimated projection pursuit Crame r-von Mises statistics, Journal of Multivariate Analysis, Vol. 63, 1-14 https://doi.org/10.1006/jmva.1997.1673
  35. Zhu, L., Wong, H. L., and Fang, K. (1995). A test for multivariate normality based on sample entropy and projection pursuit, Journal of Statistical Planning and Inference, Vol. 45, 373-385 https://doi.org/10.1016/0378-3758(94)00058-4

Cited by

  1. Tests Based on Skewness and Kurtosis for Multivariate Normality vol.22, pp.4, 2015, https://doi.org/10.5351/CSAM.2015.22.4.361