DOI QR코드

DOI QR Code

Multiferroic h-HoMnO3의 자기적 성질 연구

Magnetic Properties of Multiferroic h-HoMnO3

  • Kim, Sung-Baek (Department of Physics, Kookmin University) ;
  • Kum, Bok-Yeon (Department of Physics, Kookmin University) ;
  • Kim, Chul-Sung (Department of Physics, Kookmin University) ;
  • An, Sung-Yong (Samsung Electro-mechanics Chip Components Division) ;
  • Park, N.Hur, S. (Department of Physics and Astronomy, Rutgers University) ;
  • Cheong, S.W. (Department of Physics and Astronomy, Rutgers University) ;
  • Jang, Kwang-Hyun (Department of Physics, Sungkyunkwan University) ;
  • Park, J.G. (Department of Physics, Sungkyunkwan University)
  • 발행 : 2005.04.01

초록

4-point focused floating Bone furnace를 이용하여 multiferroic $HoMnO_3$ 단결정을 제조하였으며, 직접합성법으로 $HoMn_{1-x}\;^57Fe_xO_3$ (x=0, 0.01, 0.02, 0.05) 분말 시료를 제조하여 그 결정학적 및 자기적 성질을 연구하였다. 결정구조는 hexagonal 구조로, (110) 방향이 자화용이축 임을 알 수 있었고, 온도 변화에 따른 강유전 상수(dielectric constant $\epsilon$)는 c축과 평행한 방향에서 특이성(anomaly)을 갖는 것으로 나타났다. 이 때 특이성이 나타나는 온도 구간은, c축 방향으로 인가된 자기장 세기에 따라 민감하게 변화함이 관측되고 있어, multiferroic 소자로의 응용 가능성을 제시하고 있다. 한편 Mn 자리에 $^{57}Fe$를 미량 치환한 분말 시료에 대하여 $M\ddot{o}ssbauer$ 분광학적 연구를 수행하였다.

Multiferroic $HoMnO_3$ single crystal was prepared using 4-point focused floating zone furnace, and polycrystalline $HoMn_{1-x}\;^57Fe_xO_3$ (x=0.00, 0.01, 0.02, 0.05) powders have been prepared by solid state reaction. Their magnetic and crystallographic properties are studied using MPMS, PPMS, and $M\ddot{o}ssbauer$ spectroscopy. The crystal structure found to be a hexagonal and a magnetic easy-axis is (110) direction. As the external applied magnetic field increases, temperature of the dielectric constant anomaly is decreased. $HoMn_{0.95}\;^{57}Fe_{0.05}O_3$ shows huge quadrupole splitting value from the $M\ddot{o}ssbauer$ spectra.

키워드

참고문헌

  1. A. Munoz, J. A. Alonso, M. J. Matinez-Lope, M. T. Casais, J. L. Martinez, and M. T. Fernandez-Diaz, Phys. Rev. B, 62, 9498(2000) https://doi.org/10.1103/PhysRevB.62.9498
  2. Hisashi Sugie, Nobuyuki Iwata, and Kay Kohn, J. Phys. Soc. Jpn., 71, 1558(2002) https://doi.org/10.1143/JPSJ.71.1558
  3. T. Kimura, S. Ishihara, H. Shintani, T. Arima, K. T. Takahashi, K. Ishizaka, and Y. Tokura, Phys. Rev. B, 68, 060403(2003) https://doi.org/10.1103/PhysRevB.68.060403
  4. Nicola A. Hill, J. Phys. Chem. B, 104, 6694(2000) https://doi.org/10.1021/jp000114x
  5. T. Katsufuji, S. Mori, M. Masaki, Y. Moritomo, N. Yamamoto, and H. Takagi, Phys. Rev. B, 64, 104419(2001) https://doi.org/10.1103/PhysRevB.64.104419
  6. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature, 426, 55(2003) https://doi.org/10.1038/426003a
  7. N. Hur. S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S-W. Cheong, Nature, 429, 392(2004) https://doi.org/10.1038/nature02572
  8. A. Munoz, J. A. Alonso, M. J. Matinez-Lope, M. T. Casais, J. L. Martinez, and M. T. Fernandez-Diaz, Chem. Mater., 13, 1497(2001) https://doi.org/10.1021/cm0012264
  9. P. A. Sharma, J. S. Ahn, N. Hur, S. Park, Sung Baek Kim, Seongsu Lee, J.-G. Park, S. Guha, and S-W. Cheong, Phys. Rev. Lett., 93, 177202(2004) https://doi.org/10.1103/PhysRevLett.93.177202