DOI QR코드

DOI QR Code

Mössbauer Study of Ti0.9957Fe0.01O2

  • Kim, Eng-Chan (Department of Physics, Yeungnam University) ;
  • Moon, S.H. (Department of Physics, Yeungnam University) ;
  • Woo, S.I. (Department of Physics, Yeungnam University) ;
  • Kim, H.D. (Department of Physics, Yeungnam University) ;
  • Kim, B.Y. (Department of Physics, Yeungnam University) ;
  • Cho, J.H. (Department of Physics, Yeungnam University) ;
  • Joh, Y.G. (Department of Physics, Yeungnam University) ;
  • Kim, D.H. (Department of Physics, Yeungnam University)
  • Published : 2005.04.01

Abstract

The rutile polycrystal $Ti_{0.99}\;^{57}Fe_{0.01}O_2$ prepared with $^{57}Fe$ enriched iron have been studied by $M\ddot{o}ssbauer$ spectroscopy, X-ray diffraction and VSM. The $M\ddot{o}ssbauer$ spectrum of $Ti_{0.99}\;^{57}Fe_{0.01}O_2$ consists of a ferromagnetic and a paramagnetic phase over all temperature ranging from 4 to 300 K. Isomer shifts indicate $Fe^{2+}$ for the ferromagnetic phase, but $Fe^{3+}$ for the paramagneic phase of $Ti_{0.99}\;^{57}Fe_{0.01}O_2$ sample. It is noted that the magnetic hyperfine field of ferromagnetic phase had the value about 1.48 times as large as that of $\alpha$-Fe. The XRD data for $Ti_{0.99}\;^{57}Fe_{0.01}O_2$ showed a pure rutile phase with tetragonal structures without any segregation of Fe into particulates within the instrumental resolution limit The magnetic hysteresis (M-H) curve at room temperature showed an obvious ferromagnetic behavior and the magnetic moment per Fe atom under the applied field of 1 T was estimated to be about $0.71{\mu}_B$, suggesting a low spin configuration of Fe ions.

Keywords

References

  1. Y. Matsumoto, M. Murakami, T. Shono, T. Hasagawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Science, 291, 854(2001) https://doi.org/10.1126/science.1056186
  2. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science, 294, 1488(2001) https://doi.org/10.1126/science.1065389
  3. J. Konig, H.-H. Lin, and A. H. MacDonald, Phys. Rev. Lett., 84, 5628(2000) https://doi.org/10.1103/PhysRevLett.84.5628
  4. S. A. Chambers, S. Thevuthasan, R. F. C. Farrow. R. F. Marks, J. U. Thiele, L. Folks, M. G. Samant, A. J. Kellock, N. Ruzycki, D. L. Ederer, and U. Diebold, Appl. Phy. Lett., 79, 3467(2001) https://doi.org/10.1063/1.1381035
  5. S. A. Chambers, Materials Today April, 34(2002)
  6. S. R Shinde, et al., cond-mat/0203576
  7. G. S. Herman, M. R. Sievers, and Y. Gao, Phys. Rev. Lett., 84, 3354(2000)
  8. W. K. Park, Ricardo J. Ortega-Hertogs, Jagadeesh S. Moodera, Alex Punnoose, and M. S. seehra, J. Appl. Phys., 91, 8093(2002) https://doi.org/10.1063/1.1452650
  9. K. S. Baek, E. J. Hahn, and H. N. Ok, Phys. Rev. B, 36, 763(1987) https://doi.org/10.1103/PhysRevB.36.763
  10. H. M. Lee, S. J. Kim, I. B. Shim, and C. S. Kim, IEEE Tans. Magn., 39, 2788(2003).1 https://doi.org/10.1109/TMAG.2003.815712
  11. J. M. Sullivan, and S. C. Erwin, Phy. Rev. B, 67, 144415(2003) https://doi.org/10.1103/PhysRevB.67.144415
  12. T. Uustare, J. Aarik, and M. Elango, Appl. Phys. Lett., 65, 2551(1994)