하천에 서식하는 민물고동(다슬기)의 Sr, Pb 동위원소 특성

Sr and Pb Isotopic Properties in Limnetic Gastropod (Semisulcospira libertina) Shell in the Jinan, Jeonbuk Area.

  • 전서령 (전북대학교 지구환경과학과) ;
  • 정재일 (전북대학교 지구환경과학과)
  • Jeon Seo-Ryeong (Department of Earth and Environmental Sciences, Chonbuk National University) ;
  • Chung Jae-il (Department of Earth and Environmental Sciences, Chonbuk National University)
  • 발행 : 2005.04.01

초록

수중생물과 그 생물이 살았던 물과의 Sr 동위원소 조성은 크게 다르지 않으나, Pb 동위원소비는 Sr 동위원소와는 달리 생물과 그 생물이 살았던 물과 상이한 값을 보인다. 이 두 동위원소를 환경추적인자로 동시에 적용할 목적으로 담수에 사는 수중생물인 다슬기(Semisulcospira libertina) 껍질의 두 동위원소비를 측정하여 보았다. 하천수에 사는 다슬기 껍질의 Sr 동위원소비는 그들이 살았던 하천수의 동위원소비와는 같은 값을 보이지만, 채취지역에 따라서는 다른 값을 가진다. 하천수의 Sr 동위원소조성이 다른 것은 각 하천수의 기반암의 Sr 동위원소가 서로 다르기 때문으로 결국 하천수중의 Sr은 기반암으로부터 유래하고 다슬기 껍질의 Sr은 하천수에서 기인한 것으로 볼 수 있다. 반면에 Pb 동위원소비는 하천수와 다슬기 껍질이 서로 다른 값을 보이는 것은 하천수에 용해된 Pb이 다슬기가 흡수 가능한 Pb과는 다른 것으로 생각되며, 다슬기 껍질의 Pb 동위원소비는 강우의 Pb 동위원소비와 유사하다. 하천수에 용해된 Pb은 기반암에서 유래한 것이 아니라 토양 중에 집적된 대기기원의 Pb이 대부분인 것으로 생각된다.

The $^{87}Sr/^{86}Sr$ ratios between water and biogenic material are similar in marine and lacustrine environment. Pb isotope ratios we, however, reported not to have been corresponding between the biological tissues and ambient water in aquatic system, contrary to the Sr isotope ratios. In order to explore the potential application of two isotopes as environmental tracers, we report here the isotopic compositions of strontium and lead of gastropod shell in fresh water in Jinan area. The $^{87}Sr/^{86}Sr$ ratios of carbonate shells of gastropod living in fresh stream water, are similar as that of ambient water but are different by sites. The different $^{87}Sr/^{86}Sr$ ratios of stream water between the sites is likely caused by the difference of the isotopic composition of Sr derived form rocks in the basin. In contrast, there is a distinct difference of the lead isotopic values between the water and the gastropod shell, suggesting that shell-fish available lead in aquatic system is different from dissolved lead in water. It is assumed that the majority of Pb in stream water is derived from atmospheric Pb accumulated on soil materials over years rather than from rock.

키워드

참고문헌

  1. Aberg, G. (1985) The use of natural strontium isotopes as tracers in environmental studies. Water, Air Soil Pollution, v. 79, p. 309-332 https://doi.org/10.1007/BF01100444
  2. Aberg, G., Jacks, G. and Hamilton, P. J. (1989) Weathering rates and $^{87}Sr$/86Sr ratios: and isotopic approach. Journal of Hydrology, v. 109, p. 65-78 https://doi.org/10.1016/0022-1694(89)90007-3
  3. Bailey, S. W., Hornbeck, J. W., Driscoll, C. T and Gaudette, H. E. (1996) Calcium inputs and transport in a base-poor forest ecosystem as interpreted by strontium isotopes. Water Resources Research. v. 32, p.707-719 https://doi.org/10.1029/95WR03642
  4. Chow, T. J., Bruland, K. W, Bertine, K. K., Souter, A., Koide, M. and Goldberg, E. D. (1973) Records in Southern California coastal sediments. Science, v. 181, p. 551-552 https://doi.org/10.1126/science.181.4099.551
  5. Erel, Y. and Patterson, C. C. (1994) Leakage of industrial lead into the hydrocycle. Geochimica et Cosmochimica Acta, v. 58, p. 3289-3296 https://doi.org/10.1016/0016-7037(94)90057-4
  6. Erel, Y., Morgan J. J. and Patterson, C. C. (1991) Natural levels of lead and cadmium in a remote mountain stream. Gochim. Cosmochim. Acta, v. 55, p. 707-719 https://doi.org/10.1016/0016-7037(91)90335-3
  7. Erel, Y., Harlaban, Y. and Blum, J. D. (1994) Lead isotope systematics of granitoid weathering. Gochim. Cosmochim. Acta, v. 58, p. 5299-5306 https://doi.org/10.1016/0016-7037(94)90313-1
  8. Erel, Y., Veron, A. and Halicz, L. (1997) Tracing the transport of anthropogenic lead in the atmosphere and in soils using isotopic ratios. Geochimica et Cosmochimica Acta, v. 61, p. 4495-4505 https://doi.org/10.1016/S0016-7037(97)00353-0
  9. Flegal, A. R., Duda, T. E and Niemeyer, S. (1989a) High gradients of lead isotopic composition in northeast Pacific upwelling filaments. Nature, v. 339, p. 458-460 https://doi.org/10.1038/339458a0
  10. Flegal, A. R., Nriagu, J. O., Niemeyer, S. and Coals, K. H. (1989b) Isotopic tracers of lead contamination in the Great Lakes. Nature, v. 339, p. 455-458 https://doi.org/10.1038/339455a0
  11. Friedland, A.J. and Johnson, A. H. (1985) Lead distribution and fluxes in a high-elevation forest in Northern Vermont. Journal of Environmental Quality. v. 14, p. 332-336 https://doi.org/10.2134/jeq1985.00472425001400030006x
  12. Graustein, W C. (1988) $^{87}Sr/^{86}Sr$ ratios measure the source and flow of strontium in terrestrial ecosystems. Stable isotopes in ecological research. Springer-Verlag
  13. Jeon, S. R. (2000) Environmental Geochemistry of the abandoned Dongjin Au-Ag-Cu mine area, Korea. Ph. D. thesis, University of Tsukuba. 144p
  14. Lajtha, K. and Michener, R. H. (1994) Stable isotopes in Ecology and Environmental Science, Blackwell Science. Publisher, 316p
  15. Miller, E. K., Blum, J. D. and Friedland, A. J. (1993) Determination of soil exchangeable-cation loss and weathering rates using Strontium isotopes. Nature, v. 362, p. 438-441 https://doi.org/10.1038/362438a0
  16. Mukai, H., Furuta, N., Fujii, T., Ambe, Y, Sakamoto, K. and Hashimoto, Y. (1993) Characterization of Sources of Lead in the Urban Air os Asia Using Ratios of Stable Lead Isotopes. Environmental Science of Technology, v. 27, p. 1347-1356 https://doi.org/10.1021/es00044a009
  17. Mukai, H., Tanaka, A., and Fujii, T. (1994) Lead isotope ratios of airborne particulate matters as tracers of long-range transport of air pollutant around Japan. Journal of Geophysics, Research v. 99, no. D2, p. 3717-3726 https://doi.org/10.1029/93JD02917
  18. Na, C. K., Nakano, T., Tazawa, K., Sakagawa, M. and Ito, T. (1995) A systematic and practical method of liquid chromatography for the determination of Sr and Nd isotopic ratios and REE concentrations in geological samples. Chemical Geology, v. 123, p. 225-237 https://doi.org/10.1016/0009-2541(95)00005-7
  19. Ng, A. C. and Patterson, C. C. (1982) Changes of lead and barium with time in California off-shore basin sediments. Geochimica et Cosmochimica Acta, v. 46, p.2307-2321 https://doi.org/10.1016/0016-7037(82)90204-6
  20. Rundel, P. W, Ehleringer, J. R. and Nagy (1988) Stable Isotopes in Ecological Research, Springer-Verlag, 525p
  21. Shirnamura, S. (1925) Geological Atlas of Chosen (Korea; 1:50,000). Chinan and Cheonju sheets. Geological Survey of Korea. no. 5
  22. Shirahata, H., Elias, R.W., Patterson, C.C. and Kode, M. (1980) Chronological variations in concentrations and isotopic compositions of anthropogenic atmospheric lead in sediments of a remote subalpine pond. Geochirnica et Cosmochimica Acta, v. 44, p. 149-162 https://doi.org/10.1016/0016-7037(80)90127-1
  23. Smith, W. H. and Siccarna, T. G. (1981) The Hubbard Brook ecosystem study: Biogeochemistry of lead in the northern Hardwood forest. Journal of Environmental Quality, v. 10, p. 323-333 https://doi.org/10.2134/jeq1981.00472425001000030015x
  24. Tatsumoto, M. and Patterson, C.C. (1963) The concentration of common lead in seawater. In Earth Science and Meteorics. J. Geiss J. and Goldberg E.D. (eds), North-Holland. p. 74-89