XML-based Portable Self-containing Representation of Strongly-typed Genetic Program

XML 기반 강건 타입형 유전자 프로그램의 이식${\cdot}$독립적 표현

  • Published : 2005.04.01

Abstract

To overcome the long design time/high computational effort/low computational performance of phylogenetic learning featuring selection and reproduction, this paper proposes a genetic representation based on XML. Since genetic programs (GP) and genetic operations of this representation are maintained by the invocation of the built-in off-the-shelf XML parser's API, the proposed approach features significant reduced time consumption of GP design process. Handling only semantically correct GPs with standard XML schema can reduce search space and computational effort. Furthermore, computational performance can be improved by the parallelism of GP caused by the utilization of XML, which is a feasible system and wire format for migration of genetic programs in heterogeneous distributed computer environments. To verify the proposed approach, it is applied to the evolution of social behaviors of multiple agents modeling the predator-prey pursuit problem. The results show that the approach can be applied for fast development and time efficiency of GPs.

선택과 재생산을 특징으로 하는 계통적 학습에서 유전자 프로그램이 가지는 긴 설계시간/높은 계산노력/낮은 계산효율을 극복하고자, 이 논문은 XML에 기반을 둔 유전적 표현 방법을 제안한다. 이 방법에서 유전자 프로그램과 유전자 연산은 기성 DOM 파서의 API 호출에 의하여 관리되기 때문에, 유전자 프로그램을 설계하는데 소비되는 시간이 상당히 단축되는 특징이 있다. 또 표준 XML 스키마를 기반으로 의미적으로 올바른 유전자 프로그램만을 다루기 때문에 탐색공간과 계산노력이 감소된다. 그리고 이형 분산 컴퓨팅 환경에서 유전자 프로그램의 이주에 적합한 시스템 및 형식인 XML을 사용하기 때문에 유전자 프로그램이 병렬적으로 수행될 수 있고, 이에 따라 계산효율이 향상된다. 제안된 방법의 검증을 위하여 포식자-피식자 문제에서 다중 에이전트의 사회적 행동의 진화에 적용한 결과, 유전자 프로그램에 대한 계산시간이 단축됨을 .보인다

Keywords

References

  1. Koza, J. R., Genetic Programming: On the Programming of Computers by Means of Natural Selection, Cambridge, MA, MIT Press, 1992
  2. Morowitz, H. J.. The Emergence of Everything: How the World Became Complex, Oxford University Press, New York, 2002
  3. Meeden, L., Kumar, D., 'Trends in evolutionary robotics,' Soft Computing for Intelligent Robotic Systems, Physica-Verlag, New York, NY, pp. 215-233, 1998
  4. Parunak, H. Van D., Brueckner, S., Fleischer, M., Odell, J., 'Co- X: Defining what agents do together,' Proceedings of the AAMAS 2002 Workshop on Teamwork and Coalition Formation, Bologna, Italy, 2002
  5. Genetic Algorithms Research and Applications Group, lil-gp Genetic Programming System, URL:http:// garage.cps.msu.edu/software/lil-gp/index.html, 1998
  6. Luke, S., ECJ9: A Java-based Evolutionary Computation and Genetic Programming Research System, URL: http://www.cs.umd.edu/projects/plus/ec/ecj/, 2001
  7. Haynes, T., Wainwright, R., Sen, S., Schoenefeld, D., Strongly Typed Genetic Programming in Evolving Cooperation Strategies, 1997
  8. Montana, D., 'Strongly typed genetic programming,' Evolutionary Computation, Vol. 3, No.2, pp. 199-230, 1995 https://doi.org/10.1162/evco.1995.3.2.199
  9. Holand, J. H., Emergence: From Chaos to Order, Cambridge, Perseus Books, 1999
  10. W3C, Extensible Markup Language (XML) 1.0, Second Edition, W3C Recommendation, URL: http://www.w3.org/TR/REC-xml, 2000
  11. The Open Group, Architecture Description Markup Language (ADML): The new XML-based standard for IT architecture interoperability, URL: http://www.opengroup.org/tech/architecture/adml/adml_ho me.htm, 2001
  12. Zou, Y., Kontogiannis, K., 'Towards a portable XML-based source code representation,' Proceedings of ICSE 2001 Workshops of XML Technologies and Software Engineering, Toronto, Canada, May 15, 2001
  13. Grosof, B. N., Labrou, Y., 'An approach to using XML and a rule-based content language with an agent communication language,' Procs. IJCAI-99 Workshop on Agent Communication Languages, Stockholm, Sweden, 1999
  14. Beech, D., Maloney, M., Mendelsohn, N., Thompson. H., 'XML schema part 1: Structures,' W3C Recommendation, 2001, URL: http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
  15. Biron, P., Malhotra, A., 'XML schema part 2: Datatypes,' W3C Recommendation, 2001, URL: http://www.w3.org/TR/2001/REC-xmlschema-2-2 0010502/
  16. Milenkovich, M., Robinson, S. H., Knauerhase, R. C.,; Barkai, D., Garg, S., Tewari, V., Anderson, T. A., Bowman M., 'Toward Internet distributed computing,' Computer, Vol. 36, No.5, pp. 38-46, 2003 https://doi.org/10.1109/MC.2003.1198235
  17. Haynes, T., Sen, S., 'Evolving behavioral strategies in predators and prey,' In G. WeiB and S. Sen, editors, Adaptation and Learning in Multiagent Systems, pp. 113-126, Springer-Verlag, 1996 https://doi.org/10.1007/3-540-60923-7_22
  18. Brooks, R. A., 'A robust layered control system for a mobile robot,' IEEE Journal of Robotics and Automation, Vol. 1, No.2, pp, 14-23, 1986
  19. Tanev, I, Uozumi, T., Ono, K., 'DCOM-based parallel distributed implementation of genetic programming,' Parallel and Distributed Computing Practices, special issue on Distributed Object Oriented Systems, Vol. 3, No. 1, pp. 77-88, 2000