DOI QR코드

DOI QR Code

미생물의 보존적 유전자 탐색

Investigation of Conserved Genes in Microorganism

  • 이동근 (마린바이오산업화 지원센터, 신라대학교 공과대학 생명공학과) ;
  • 이재화 (마린바이오산업화 지원센터, 신라대학교 공과대학 생명공학과) ;
  • 이상현 (마린바이오산업화 지원센터, 신라대학교 공과대학 생명공학과) ;
  • 하배진 (마린바이오산업화 지원센터, 신라대학교 공과대학 생명공학과) ;
  • 심두희 (마린바이오산업화 지원센터, 신라대학교 공과대학 생명공학과) ;
  • 박은정 (마린바이오산업화 지원센터, 신라대학교 공과대학 생명공학과) ;
  • 김진욱 (마린바이오산업화 지원센터, 신라대학교 공과대학 생명공학과) ;
  • 이화월 (마린바이오산업화 지원센터, 신라대학교 공과대학 생명공학과) ;
  • 남천석 (마린바이오산업화 지원센터, 신라대학교 공과대학 생명공학과) ;
  • 김남영 (마린바이오산업화 지원센터, 신라대학교 공과대학 생명공학과) ;
  • 이어진 (마린바이오산업화 지원센터, 신라대학교 공과대학 생명공학과) ;
  • 백진욱 (마린바이오산업화 지원센터, 신라대학교 공과대학 생명공학과) ;
  • 하종명 (마린바이오산업화 지원센터, 신라대학교 공과대학 생명공학과)
  • Lee Dong-Geun (Marine-Biotechnology Center for Bio-functional material Industries, Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Lee Jae-Hwa (Marine-Biotechnology Center for Bio-functional material Industries, Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Lee Sang-Hyeon (Marine-Biotechnology Center for Bio-functional material Industries, Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Ha Bae-Jin (Marine-Biotechnology Center for Bio-functional material Industries, Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Shim Doo-Hee (Marine-Biotechnology Center for Bio-functional material Industries, Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Park Eun-Kyung (Marine-Biotechnology Center for Bio-functional material Industries, Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Kim Jin-Wook (Marine-Biotechnology Center for Bio-functional material Industries, Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Li Hua-Yue (Marine-Biotechnology Center for Bio-functional material Industries, Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Nam Chun-Suk (Marine-Biotechnology Center for Bio-functional material Industries, Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Kim Nam Young (Marine-Biotechnology Center for Bio-functional material Industries, Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Lee Eo-Jin (Marine-Biotechnology Center for Bio-functional material Industries, Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Back Jin-Wook (Marine-Biotechnology Center for Bio-functional material Industries, Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Ha Jong-Myung (Marine-Biotechnology Center for Bio-functional material Industries, Department of Bioscience and Biotechnology, College of Engineering, Silla University)
  • 발행 : 2005.04.01

초록

생명체의 본질적 기능에 중요한 역할을 담당하는 유전자들을 밝히기 위해 미생물 유전체들 사이의 공통적 유전자를 밝히는 COG알고리듬을 이용하였다. 진핵생물 3종을 포함한 66종의 미생물에서 63개의 유전자가 보존적이었으며, 단백질 합성에 관여하는 유전자들이 총 52개로 생명현상에서의 단백질의 중요성을 알 수 있었다. 각 보존적 유전자들의 distance value를 이용하여 종간의 유전자 변이의 정도를 보면, ribosomal protein S12 (COG0048)와 ribosomal protein L14 (COG0093)의 보존성이 가장 높았다. 보존적 유전자들의 평균과 분산으로 유전체 분석을 수행한 결과, 고세균과 진정세균의 각 그룹 등 근연종들이 독자적 그룹을 형성하였다. 하지만 각 그룹내의 속 및 유전체의 수와 유전체 변이의 정도는 비례하지 않는 것을 알 수 있었다.

To figure out conserved genes in 66 microbial species and measuring the degree of conservation, analyses based on COG (Clusters of Orthologous Groups of proteins) algorithm were applied. Sixty-six microbial genomes, including three eukaryotes, hold 63 conserved orthologs in common. The majority $(82.5\%)$ of the conserved genes was related to translation, meaning the importance of protein in living creatures. Ribosomal protein S12 (COG0048) and L14 (COG0093) were more conserved genes than others from the distance value analysis. Phylogenetically related microbes grouped in genome analysis by average and standard deviation of 63 conserved genes. The 63 conserved genes, found in this research, would be useful in basic research and applied ones such as antibiotic development.

키워드

참고문헌

  1. Bapteste, E., Y. Boucher, J. Leigh, and W. F. Doolittle. 2004. Phylogenetic reconstruction and lateral gene transfer. Trends Microbiol. 12, 406-411 https://doi.org/10.1016/j.tim.2004.07.002
  2. Fraser, C. M., J. A. Eisen, and S. L. Salzberg. 2000. Microbial genome sequencing. Nature 406, 799-803 https://doi.org/10.1038/35021244
  3. ftp://ftp.ncbi.nih.gov/genbank/genomes/ Bacteria
  4. Harper, J. T. and P. J. Keeling. 2004. Lateral gene transfer and the complex distribution of insertions in eukaryotic enolase. Gene 340, 227-235 https://doi.org/10.1016/j.gene.2004.06.048
  5. Henikoff, S., E. A. Greene, B. S. Pietrokovski, T. K. Attwood, and L. Hood. 1997. Gene Families: The Taxonomy of Protein Paralogs and Chimeras. Science 278, 609-614 https://doi.org/10.1126/science.278.5338.609
  6. http://www.ncbi.nlm.nih.gov/COC/new/release/phylox.cgi
  7. Jordan, I. K., Y. I. Wolf, and E. V. Koonin. 2004. Duplicated genes evolve slower than singletons despite the initial rate increase. BMC Evolutionary Biology 4, 22 https://doi.org/10.1186/1471-2148-4-22
  8. Kang, H.-Y., C.-J. Shin, B.-C. Kang, J.-H. Park, D.-H. Shin, J.-H. Choi, H.-G. Cho, J.-H. Cha, D.-G. Lee, J.-H. Lee, H.-K. Park, and C.-M. Kim. 2002. Investigation of Conserved Gene in Microbial Genomes using in silico Analysis, Korean Journal of Life Sci. 5, 610-621
  9. Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press
  10. Lee, D.-G., H.-Y. Kang, J.-H. Lee, and C.-M. Kim. 2003. Detection of Conserved Genes in Proteobacteria by using a COG Algorithm. Korean J. Biotechnol. Bioeng. 17, 560-565
  11. Mushegian, A. 1999. The minimal genome concept. Curr. Opin. Genet. 9, 709-714 https://doi.org/10.1016/S0959-437X(99)00023-4
  12. Tatusov, R. L., E. V. Koonin, and D. L. Lipman. 1997. A genomic perspective on protein families. Science 278, 631-637 https://doi.org/10.1126/science.278.5338.631
  13. Tatusov, R. L., M. Y. Galperin, D. A. Natale, and E. V. Koonin. 2000. The COG database, a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33-36 https://doi.org/10.1093/nar/28.1.33
  14. Vishwanath, P., P. Favaretto, H. Hartman, S. C. Mohr, and T. F. Smith. 2004. Ribosomal protein-sequence block structure suggests complex prokaryotic evolution with implications for the origin of eukaryotes. Mol. Phylogenet. Evol. 33, 615-625 https://doi.org/10.1016/j.ympev.2004.07.003

피인용 문헌

  1. Investigation of Conserved Genes in Eukaryotes Common to Prokaryotes vol.23, pp.4, 2013, https://doi.org/10.5352/JLS.2013.23.4.595
  2. Comparison of Mitochondria-related Conserved Genes in Eukaryotes and Prokaryotes vol.24, pp.7, 2014, https://doi.org/10.5352/JLS.2014.24.7.791
  3. Investigation of Conservative Genes in 711 Prokaryotes vol.25, pp.9, 2015, https://doi.org/10.5352/JLS.2015.25.9.1007
  4. Phylogenetic Analysis of 680 Prokaryotes by Gene Content vol.26, pp.6, 2016, https://doi.org/10.5352/JLS.2016.26.6.711