DOI QR코드

DOI QR Code

The Influence of Pretreatment Period, 2-Hydroxynicotinic Acid and Anther Co-pretreatment on Embryo Induction in Isolated Microspore Culture of Capsicum annuum L.

고추의 나출 소포자 배양시 전처리 기간, 2-Hydroxynicotinic Acid 및 약-공동전처리가 소포자배 발생에 미치는 영향

  • Published : 2005.03.01

Abstract

Microspores were isolated from pepper (Capsicum annuum L.) anthers by using a micro-blender and cultured in modified NLN medium at $25^{\circ}C$. The influence of pretreatment period at $32^{\circ}C$, adding the 2-hydroxynicotinic acid to a pretreatment medium, and co-pretreatment anthers with microscopes on the induction of embryo were examined. Globular and torpedo embryos were observed from 3 weeks after culture. Embryo development was not synchronized within culture. After 4 weeks in culture, in addition to globular and torpedo embryos, cotyledonary embryos were observed. Normal cotylodonary embryos developed into plantlets when transferred to a solid hormone free B5 medium containing $2\%$ sucrose. Embryo yields were significantly higher after 1- and 2-day pretreatment at $32^{\circ}C$. However the development of embryo ceased at the globular or heart stage. In contrast, embryo yields were lower after 3- to 6-day pretreatment at $32^{\circ}C$ and embryo developed at the cotyledonary stage. After adding the 2-hydroxynicotinic acid to anther pretreatment solution, embryo yields were slightly increased. However most embryos occurred were at the globular or heart stage. Co-pretreatment of microspores with anthers was deleterious for embryo induction and development. AS far as we know, this is the first report of success in obtaining high frequency of embryogenesis and plantlets formation from isolated microspores of pepper. Although the culture conditions have to be optimized further, this promising microspore culture system can be used for genetic transformation, selection for dominant and recessive traits as well as for the production of homozygous doubled haploid plants.

고추의 나출 소포자로부터 배를 유기하는데 최적인 조건을 확립하기 위하여 micro-blender를 사용하여 소포자들을 나출한 후 NLN 배지에 배양하였으며 $32^{\circ}C$의 고온처리 기간, 전처리 배지내 2-hydroxynicotinic acid의 첨가, 그리고 약과 소포자의 공동전처리가 소포자배의 발생에 미치는 영향을 조사하였다. 나출 소포자들을 기아배지에서 고온처리 한 후 NLN 배지에 배양하였을 때 다수의 배가 발생하였다. 배양 3주 후부터 구형 및 어뢰형배가 관찰되었는데 이때 배의 발생은 비동조적으로 일어났다. 배양4주가 되면 구형과 어뢰형배 이외에 자엽배들이 발생하였다. 발생한 배들 중자엽배늘은 $2\%$ sucrose가 첨가되고 생장조절물질은 첨가되지 않은 B5 고체배지로 옮겼을 때 정상인 유식물들로 발달하였다. 고온처리 기간이 $1\~2$일로 짧은 경우 소포자배의 발생은 높았으나 대부분이 발달초기의 구형 또는 심장형배이었으며 자엽배의 발생은 매우 드물었다. 고온처리 3일 이상에서는 배의 발생은 크게 감소하였으나 자엽배가 다수 발생하였다. Inducer chemical로 알려진 2-hydroxynicotinic acid를 약전처리배지에 첨가하였을 때 배의 발생은 다소 높았으나 발달은 오히려 억제되어 대부분이 구형 또는 심장형이었다. 소포자 전처리시 약을 첨가한 경우 배의 발생이나 발달 모두 억제되었다. 본 연구결과 고추의 나출 소포자로부터 다수의 배를 획득하였고 식물체를 재분화 시키는데 처음으로 성공하였다. 이와 같은 소포자 배양시스템은 앞으로 더 많은 배를 생산할 수 있는 배양조건이 확립되어야 하지만 homozygous한 배가 반수체의 생산 뿐만아니라 형질 전환과 열성 또는 우성의 돌연변이체 선발에 매우 유용하게 이용될 수 있을 것이다. 비해 $ 0.27\~0.79\;\cal{mg/g}$ F.W.가 높았으며 환기횟수 $0.1 h^{-1}$ 처리구는 광도의 증가에 따른 효과가 나타나지 않았으나 환기횟수 $0.1 h^{-1}$ 처리구는 높은 광도에서 감소하였다. 환기횟수 $4.9 h^{-1}$$0.1 h^{-1}$에 비해 잎의 공변세포가 크고 주변 부세포가 잘 발달되어 있었다. 특히 PPF $99\;{\mu}mol\;m^{-2}s^{-1}$에서 환기횟수 $0.1 h^{-1}$는 부세포의 발달이 미흡하고 기공이 많이 열려 있는 상태인 반면 환기횟수 $4.9 h^{-1}$는 부세포가 잘 발달된 잎을 지니고 있었다.:PR30, KB50:PR50, PR100:KB0 처리구의 $1m^2$ 당 개체 수는 각각 16,600개, 6,700개, 4,900개, 3,300개, 12,400개였으며 총직립경 수는 각각 33,200개, 22,800개, 18,000개, 15,000개, 62,000개였다. 개체 수는 KB100:PR0처리구가 가장 높았고, 다음은 PR100:KB0처리구였으며 혼합처리구의 경우는 Kentucky bluegrass 혼합비 율이 높을수록 높았다. 총직립경 수는 PR100:KB0 처리구가 KB100:PR0 처리구보다 오히려 높았으며 혼합 처리구의 경우는 개체수와 비슷한 경향을 보였다. 혼합처리구의 경우 초종별 개체수의 비율은 KB80:PR20는 87:13, KB70:PR30는 78:22, KB50:PR50은 48:52의 비율로 나타났다. 조성시기의 기상과 피복율과의 상관관계 2001년 가을과 2002년 봄의 일일평균기온을 비교하여 보면 가을(9월, 10월, 11월) 3개월간의 일일평균기온은

Keywords

References

  1. Baillie AMR, Epp DJ, Hutcheson D, Keller WA (1992) In vitro culture of isolated microspores and regeneration of plants in Brassica campestris. Plant Cell Rep 11: 234-237
  2. Barany I, Testillano PS, Mityko J, Risueno MC (2001) The switch of the microspore developmental program in Capsicum involves HSP70 expression and leads to the production of haploid plants. lnt J Dev Biol 45(S1): S39-S40
  3. Binarova P, Hause G, Cenklova V, Cordewener JHG, van Lookeren Campagne MM (1997) A short severe heat shock is required to induce embryogenesis in late bicellular pollen of Brassica napus L. Sex Plant Reprod 10: 200-208 https://doi.org/10.1007/s004970050088
  4. Castillo AM, Cistue L, Valles MP, Sanz JM, Romagosa I, Molina-Cano JL (2001) Efficient production of androgenic doubled-haploid mutants in barley by the application of sodium azide to anther and microspore cultures. Plant Cell Rep 20: 105-111 https://doi.org/10.1007/s002990000289
  5. Chuong PV, Beversdorf WD (1985) High frequency embryogenesis through isolated microsopre culture in Brassica napus L. and B. carinata braun. Plant Sci 39: 219-226 https://doi.org/10.1016/0168-9452(85)90178-5
  6. Cistue L, Ziauddin A, Simion E, Kasha KJ (1995) Effects of culture conditions on isolated microspore response of barley cultivar Igri. Plant Cell Tiss Org Cult 42: 163-169 https://doi.org/10.1007/BF00034234
  7. Custers JBM, Cordewener JHG, Dons HJM, van Lookeren Campagne MM (1996) Regulation of the inductive phase of microspore embryogenesis in Brassica napus. In: Dias JS, Crute I, Monteiro AA, (eds), Proc Int Sym on Brssicas, Ninth Crucifer Genetics Workshop, Acta Hort 407, pp 209-217
  8. Custers JBM, Cordewener JHG, NOllen Y, Dons HJM, van Lookeren Campagne MM (1994) Temperature controls both gametophytic and sporophytic development in microspore cultures of Brassica napus. Plant Cell Rep 13: 267-271 https://doi.org/10.1007/BF00233317
  9. Datta SK, Wenzel G (1987) Isolated microspore derived plant formation via embryogenesis in Triticum aestivum L. Plant Sci 48: 49-54 https://doi.org/10.1016/0168-9452(87)90069-0
  10. Decout E, Dubois T, Guedira M, Dubois J, Audran JC, Vasseur J (1994) Role of temperature as a triggering signal for organogenesis or somatic embryogenesis in wounded leaves of chicory cultured in vitro. Jour of Exp Bot 45: 1859-1865 https://doi.org/10.1093/jxb/45.12.1859
  11. Dumas de Vaulx R, Chambonnet D, Pochard E (1981) In vitro culture of pepper (Capsicum annuum L.) anthers: high rate plant production from different genotypes by $+35^{\circ}C$ treatments. Agronomie 1: 859-864 https://doi.org/10.1051/agro:19811006
  12. Gamborg OL, Murashige T, Thorpe TA, Vasil IK (1976) Plant tissue culture media. In Vitro 12: 473-478 https://doi.org/10.1007/BF02796489
  13. Heslop-Harrison JS (1992) Cytological techniques to assess pollen quality. In: Cresti M, Tiezzi A,(eds), Sexual plant reproduction, Spriger-Verlag, Berlin, pp 41-48
  14. Hoekstra S, van Zijderveld MH, louwerse JD, Heidekamp F, van der Mark F (1992) Anther and microspore culture of Hordeum vulgare L. cv Igri. Plant Sci 86: 89-96 https://doi.org/10.1016/0168-9452(92)90182-L
  15. Hofer M (2004) In vitro androgenesis in apple-improvement of the induction phase. Plant Cell Rep 22: 365-370 https://doi.org/10.1007/s00299-003-0701-y
  16. Hu T, Kasha KJ (1997) Improvement of isolated microspore culture of wheat (Triticum aestivum L.) through ovary co-culture. Plant Cell Rep 16: 520-525 https://doi.org/10.1007/BF01142316
  17. Jahne A, Becker D, Brettschneider R, lorz H (1994) Regeneration of transgenic, microspore-derived, fertile barley. Theor Appl Genet 89: 525-533
  18. Kim M (1999) The influence of temperature pretreatment on the production of microspore embryos in anther culture of Capsicum annuum L. Korean J Plant Tiss Cult 26: 71-76
  19. Kim M, Kim J, Yoon M, Chio D, Lee KM (2004) Origin of multicellular pollen and pollen embryos in cultured anthers of pepper (Capsicum annuum) Plant Cell Tiss Org Cult 77: 63-72 https://doi.org/10.1023/B:TICU.0000016506.02796.6a
  20. Kyo M, Harada H (1985) Studies on conditions for cell division and embryogenesis in isolated pollen culture of Nicotiana rustica. Plant Physiol 79: 90-94 https://doi.org/10.1104/pp.79.1.90
  21. Kyo M, Harada H (1986) Control of the developmental pathway of tobacco pollen in vitro. Planta 168: 427-432 https://doi.org/10.1007/BF00392260
  22. Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Z Pflanzen Physiol 105: 427-434 https://doi.org/10.1016/S0044-328X(82)80040-8
  23. Liu W, Zheng MY, Konzak CF (2002) Improving green plant production via isolated microspore culture in bread wheat (Triticum aestivum L.) Plant Cell Rep 20: 821-824. https://doi.org/10.1007/s00299-001-0408-x
  24. Miyoshi K (1996) Callus induction and plantlet formation through culture of isolated microspores of eggplant (Solanum melongena L.). Plant Cell Rep 15: 391-395 https://doi.org/10.1007/BF00232061
  25. Peng M, Wolyn DJ (1999) Improved callus formation and plant regeneration for shed microspore culture in asparagus (Asparagus officinalis L.). Plant Cell Rep 18: 954-958 https://doi.org/10.1007/s002990050690
  26. Penhuizic CLL, Chatelet C, Kloareg B, Potin P (2001) Carrageenan oligosaccharides enhance stress-induced microspore embryogenesis in Brassica oleracea var. italira. Plant Sci 160: 1211-1220 https://doi.org/10.1016/S0168-9452(01)00372-7
  27. Pescitelli SM, Johnson CD, Petolino JF (1990) Isolated microspore culture of maize: effects of isolation technique, reduced temperature, and sucrose level. Plant Cell Rep 8: 628-631 https://doi.org/10.1007/BF00270070
  28. Raina SK, Irfan ST (1998) High-frequency embryogenesis and plantlet regeneration from isolated microspores of indica rice. Plant Cell Rep 17: 957-962 https://doi.org/10.1007/s002990050517
  29. Regner F (1996) Anther and microspore culture in Capsicum. In: Jain SM, Sopory SK, Veilleux RE, (eds), In vitro haploid production in higher plants, vol. 3, Kluwer Academic Publ, Dordrecht the Netherlands, pp 77-89
  30. Stoger E, Fink C, Pfosser M (1995) Plant transformation by particle bombardment of embryogenic pollen. Plant Cell Rep 14: 273-278
  31. Swanson EB, Herrgesell MJ, Arnoldo M, Sipell DW, Wang RSC (1989) Microspore mutagenesis and selection: canola plants with field tolerance to the imidazolinones. Theor Appl Genet 78: 525-531 https://doi.org/10.1007/BF00290837
  32. Swanson EB (1990) Microspore culture in Brassica. In: Pollard JW, Walker JM, (eds), Methods in molecular biology, Vol. 6, Plant cell and tissue culture. Humana Press, New Jersey, pp 159-170
  33. Telmer CA, Newcomb W, Simmonds DH (1993) Microspore development in Brassica napus and the effect of high temperature on division in vivo and in vitro. Protoplasma 172: 154-165 https://doi.org/10.1007/BF01379373
  34. Testillano PS, Gonzalez-Melendi P, Ahmadian P, Fadon B, Risueno MC (1995) The immunolocalization of nuclear antigens during the pollen developmental program and the induction of pollen embryogenesis. Exp Cell Res 221: 41-54 https://doi.org/10.1006/excr.1995.1350
  35. Touraev A, Indrianto A, Wratschko I, Vicente O, Heberle-Bors E (1996) Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperature. Sex Plant Reprod 9: 209-215 https://doi.org/10.1007/BF02173100
  36. Zhao J, Simmonds D, Newcomb W (1996) Induction of embryogenesis with colchicine instead of heat in microspores of Brassica napus L. cv. Topas. Planta 198: 433-439 https://doi.org/10.1007/BF00620060
  37. Zheng MY, Liu W, Weng Y, Polle E (2001) Culture of freshly isolated wheat (Triticum aestivum L.) microspores treated with inducer chemicals. Plant Cell Rep 20: 685-690 https://doi.org/10.1007/s00299-001-0393-0