References
- B. D. Sharma and S. N. Goel, A note on bounds for Burst correcting codes with Lee weight consideration, Inform. and Control 33 (1977), 210-216 https://doi.org/10.1016/S0019-9958(77)80002-8
- E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968
Cited by
- Correction of CT burst array errors in the generalized-lee-RT spaces vol.26, pp.8, 2010, https://doi.org/10.1007/s10114-010-8508-6
- Array Codes in the Generalized Lee-RT Pseudo-Metric (GLRTP-Metric) vol.17, pp.spec01, 2010, https://doi.org/10.1142/S1005386710000702
- ON THE GENERALIZED-LEE-RT-PSEUDO-METRIC (THE GLRTP-METRIC) ARRAY CODES CORRECTING BURST ERRORS vol.01, pp.01, 2008, https://doi.org/10.1142/S1793557108000138
- Extended Varshamov-Gilbert-Sacks Bound for Linear Lee Weight Codes vol.19, pp.spec01, 2012, https://doi.org/10.1142/S1005386712000752
- On a Sufficient Condition to Attain Minimum Square Distance in Euclidean Codes vol.18, pp.03, 2011, https://doi.org/10.1142/S100538671100037X
- SIMULTANEOUS RANDOM ERROR CORRECTION AND BURST ERROR DETECTION IN LEE WEIGHT CODES vol.30, pp.1, 2008, https://doi.org/10.5831/HMJ.2008.30.1.033
- Sufficient Condition over the Number of Parity Checks for Burst Error Detection/Correction in Linear Lee Weight Codes vol.14, pp.02, 2007, https://doi.org/10.1142/S1005386707000338
- Singleton's Bound in Euclidean Codes vol.17, pp.spec01, 2010, https://doi.org/10.1142/S1005386710000714
- Construction of Lee Weight Codes Detecting CT-Burst Errors and Correcting Random Errors vol.18, pp.spec01, 2011, https://doi.org/10.1142/S1005386711000733