References
- B. Bongiorno, L. Di Piazza, and V. Skvortsov, On continuous major and mi- nor functions for the n-dimensional Perron integral, Real Anal. Exchange 22 (1996/1997), no. 1, 318-327
- B. Bongiorno, On the n-dimensional Perron integral defined by ordinary derivatives, Real Anal. Exchange 26 (2000/2001), no. 1, 371-380
- R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, Amer. Math. Soc., 1994
- J. Kurzweil and J. Jarnik, Equivalent definitions of regular generalized Perron integral, Czechoslovak Math. J. 42 (1992), 365-378
-
J. Kurzweil, Differentiability and integrability in n dimensions with respect to
$\alpha$ -regular intervals, Results Math. 21 (1992), no. 1-2, 138-151 https://doi.org/10.1007/BF03323075 - M. P. Navarro and V. A. Skvortsov, On n-dimensional Perron integral, South- east Asian Bull. Math. 20 (1997), no. 2, 111-116
- K. M. Ostaszewski, Henstock Integration in the Plane, vol. 353, Mem. Amer. Math. Soc., 1986
- Jae Myung Park, The Denjoy extension of the Riemann and McShane integrals, Czechoslovak Math. J. 50 (2000), no. 125, 615-625 https://doi.org/10.1023/A:1022845929564
- S. Saks, Theory of the Integral, Dover, New York, 1964
-
V. A. Skvortsov, Continuity of
$\delta$ -variation and construction of continuous major and minor functions for the Perron integral, Real Anal. Exchange 21 (1995/1996), no. 1, 270-277