Abstract
In this paper we consider the decompositions of subdirect sums and direct sums in bounded BCK-algebras. The main results are as follows. Given a bounded BCK-algebra X, if X can be decomposed as the subdirect sum $\bar{\bigoplus}_{i{\in}I}A_i$ of a nonzero ideal family $\{A_i\;{\mid}\;i{\in}I\}$ of X, then I is finite, every $A_i$ is bounded, and X is embeddable in the direct sum $\bar{\bigoplus}_{i{\in}I}A_i$ ; if X is with condition (S), then it can be decomposed as the subdirect sum $\bar{\bigoplus}_{i{\in}I}A_i$ if and only if it can be decomposed as the direct sum $\bar{\bigoplus}_{i{\in}I}A_i$ ; if X can be decomposed as the direct sum $\bar{\bigoplus}_{i{\in}I}A_i$, then it is isomorphic to the direct product $\prod_{i{\in}I}A_i$.