참고문헌
- S. Aloff and N. Wallach, An infinite family of distinct 7-manifolds admitting positively curved manifolds, Bull. Amer. math. Soc. 81 (1975), 93-97 https://doi.org/10.1090/S0002-9904-1975-13649-4
- A. Bazaikin, On a family of 13-dimensional closed Riemannian manifolds of positive secional curvature, Thesis, Univ. of Novosibirisk, 1995
- M. Berger, Les varietes riemanniennes 1/4-pincees , Ann. Scuola Norm. Sup. Pisa 14 (1960), 161-170
- M. Berger, Les varietes riemanniennes homogenes normales simplement connexes a coubure stictement positive , Ann. Scuola Norm. Sup. Pisa 15 (1961), 179-246
- A. Besse, Einstein Manifolds, Springer-Verlag, 1987
- S. Bochner, Vector fields and Ricci curvature, Bull. Amer. Math. Soc. 52 (1946), 776-797 https://doi.org/10.1090/S0002-9904-1946-08647-4
- J. Cheeger , Some examples of manifolds of nonnegative Curvature, J. Differential Geom. 8 (1973), 623-628 https://doi.org/10.4310/jdg/1214431964
- J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry, North Holland, Amsterdam, 1975
- S. S. Chern , On curvature and Charateristic Class of a Riemannian Manifold, J. Abh. Math. Sem. Univ. Hamhurg 20 (1955), 117-126 https://doi.org/10.1007/BF02960745
- S. S. Chern, The Geometry of G-structure, Bull. Amer. Math. Soc. 72 (1966), 167-219
- J. H. Eschenberg, Inhomogeneous space of positive curvature, Differential Geom. Appl. 2 (1992), 123-132 https://doi.org/10.1016/0926-2245(92)90029-M
- J. H. Eschenberg, New examples of manifolds with stictly positive curvature, Invent. Math. 66 (1982), 469-480 https://doi.org/10.1007/BF01389224
- R. Geroch, Positive sectional curvature does not imply positive Gauss-Bonnet integrand, Proc. Amer. Math. Soc. 54 (1976), 267-270 https://doi.org/10.2307/2040798
- D. Gromoll and W. T. Meyer, An exotic sphere with nonnegative sectional cur- vature, Ann. of Math. 100 (1974), 401-406 https://doi.org/10.2307/1971078
- R. Hamilton, 3-manifolds with positive Ricci curvature, J. Differential Geom. 12 (1982), 255-306
- R. Hamilton, Formation of singularities in the Ricci flow, Surv. Differ. Geom. 2 (1985), 7-136
- R. Hamilton, Non-singular solutions of the Ricci flow on 3-manifolds, Comm. Anal. Geom. 7 (1999), 695-729 https://doi.org/10.4310/CAG.1999.v7.n4.a2
- H. Hopf, Differentilageometrie und topologische Gestalt, Jahres-berichtd. DMV. 41 (1932), 209-229
- S. B. Myers, Riemannian Manifolds with Positive Mean Curvature, Duke Math. J. 8 (1941), 401-404 https://doi.org/10.1215/S0012-7094-41-00832-3
- B. O'neill, The fundamental equation of a submerion, Michigan Math. J. 23 (1966), 459-469
- H. Samelson, On curvature and characteristic of homogenous spaces, Michigan Math. J. 5 (1958), 13-18 https://doi.org/10.1307/mmj/1028998006
- J. L. Synge, On the Connectivity of Spaces of Positive Curvature, Q. J. Math. 7 (1936), 316-320 https://doi.org/10.1093/qmath/os-7.1.316
- S. Tanno, Pomenades on spheres, Tokyo Ibst. Tech. 1996
- N. Wallach, Compact homogeneous Riemannian manifolds with strictly positive curvature, Ann. of Math. 96 (1972), 277-295 https://doi.org/10.2307/1970789
- S. T. Yau, Problem section , Seminar on Differential Geometry, Princeton Univ. Press, 1977, 669-709
- F. Zheng, Complex Differential Geometry, Studies in Advanced Math. 18 (2000)