Wireless Measurement based TFRC for QoS Provisioning over IEEE 802.11

IEEE 802.11에서 멀티미디어 QoS 보장을 위한 무선 측정 기반 TFRC 기법

  • 변재영 (조선대학교 정보통신공학과 무선및이동통신시스템연구실)
  • Published : 2005.04.01

Abstract

In this paper, a dynamic TCP-friendly rate control (TFRC) is proposed to adjust the coding rates according to the channel characteristics of the wireless-to-wired network consisting of wireless first-hop channel. To avoid the throughput degradation of multimedia flows traveling through wireless lint the proposed rate control system employs a new wireless loss differentiation algorithm (LDA) using packet loss statistics. This method can produce the TCP-friendly rates while sharing the backbone bandwidth with TCP flows over the wireless-to-wired network. Experimental results show that the proposed rate control system can eliminate the effect of wireless losses in flow control of TFRC and substantially reduce the abrupt quality degradation of the video streaming caused by the unreliable wireless link status.

본 논문에서는 first-hop 무선 채널을 갖는 무-유선망에서 채널 특성에 따라 코딩 비트율을 조절할 수 있는 동적 TCP-friendly 비트율 제어방식 (TFRC)을 제안한다. 제안되는 비트율 제어 기법은 무선망을 통해 전송되는 멀티미디어 플로우의 QoS 성능 저하 현상을 피하기 위해 패킷 손실 통계자료를 이용한 새로운 무선 손실 구별 알고리즘을 사용하고 있다. 이 알고리즘은 무-유선망에서 TCP 플로우와 함께 백본 대역폭을 공유하는 동안 TCP-friendly하도록 비트율을 생성한다. 실험 결과를 통해 제안하는 비트율 제어방식의 시스템은 TFRC 흐름 제어에서 무선 손실의 영향을 제거하고 신뢰성이 낮은 무선 링크에 의해서 발생되는 비디오 스트림의 갑작스런 품질 저하 현상을 상당히 줄일 수 있음을 알 수 있다.

Keywords

References

  1. B. P. Crow, I. Widjaja, J. G. Kim, and P. T. Sakai, 'IEEE 802.11 wireless local area networks,' IEEE Commun. Mag., pp. 116-126, Sep. 1997
  2. F. Cali, M. Conti, and E. Gregori, 'IEEE 802.11 Wireless LAN: Capacity Analysis and Protocol Enhancement,' in Proc. INFOCOM98, vol. 1, no. 1, 142-149, Mar. 1998
  3. B. Bing, 'Measured Performance of the IEEE 802.11 Wireless LAN,' in Proc. Int. Conf. Local Computer Networks (LCN99), pp. 34-42. Oct. 1999 https://doi.org/10.1109/LCN.1999.801993
  4. O. Sharon and E. Altman, 'An Efficient Polling MAC for Wireless LANs,' IEEE Trans. Networking, vol. 9, no. 4, pp. 439-451, Aug. 2001 https://doi.org/10.1109/90.944342
  5. H. J. Song and K. M. Lee, 'Adaptive rate control algorithms for low-bit-rate video under the networks supporting band-width renegotiation,' Signal Process. : Image Commun., vol. 17, no. 10, pp. 759-779, Nov. 2002 https://doi.org/10.1016/S0923-5965(02)00007-3
  6. M. handley, S. Floyd, J. Padhye, and J. Widmer, 'TCP friendly rate control (TFRC): protocol specification,' RFC 3448, Jan. 2003
  7. S. Floyd, M. Handley, J. Padhye, and J. Widmer, 'Equation-based congestion control for unicast applications,' in Proc. SIGCOMM, Aug. 2000
  8. Q. Wang, K. Long, S. Cheng, and R. Zhang, 'TCP-Friendly Congestion Control Schemes in the Internet,' in Proc. Int. Conf. Info-tech and Info-net (ICII01), vol. 2, pp. 211-216, Oct. 2001 https://doi.org/10.1109/ICII.2001.983579
  9. Tian, S. Xiangzhi, and W. Wenjun, 'The Effect on the Inter-Fairness of TCP and TFRC by phase of TCP traffics,' in Proc. Computer Networks and Mobile Computing, pp. 131-136, 2001
  10. W. T. Tan and A. Zakhor, 'Real-time Internet video using error resilient scalable compression and TCP-friendly transport protocol,' IEEE Trans. Multimedia, vol. 1, no. 2, pp. 172-186, Jun. 1999 https://doi.org/10.1109/6046.766738
  11. Video Coding Experts Group, Video codec test model, TMN8, 1997
  12. Huang, U. Horn, F. Hartung, and M. Kampmann, 'Proxy-based TCP-friendly streaming over mobile networks,' in Proc. ACM Workshop on Wireless and Mobile Multimedia (WOWMOM02), Sep. 2002
  13. S.-J. Bae and S. Chong, 'TCP-Friendly Wireless Multimedia Flow Control Using ECN Marking,' in Proc. GLOBECOM02, vol. 2, pp. 1794-1799, Nov. 2002
  14. S. Cen, P. C. Cosman, and G. M. Voelker, 'End-to-end differentiation of congestion and wireless losses,' in Proc. Multimedia Computing and Networking, pp. 115, Jan. 2002
  15. L. Qiu, P. Bahl, and A. Adya, 'The effect of first-hop wireless bandwidth allocation on end-to-end network performance,' in Proc. Int. Workshop Network and Operating Systems Support for Digital Audio and Video 2002 (NOSSDAV02), May 2002 https://doi.org/10.1145/507670.507683
  16. Network Simulator, ns-2.(http://www.isi.edu/nsnam/ns/)
  17. Y. G. Kim, J. Kim, and C. C. Jay Kuo, 'Network-Aware error control using smooth and fast rate adaptation mechanism for TCP-friendly Internet video,' in Proc. Int. Conf. Computer Communications and Networks, pp. 320-325, Oct. 2000
  18. Wenger, G. Knorr, J. Ott, and F. Kossentini, 'Error resilience support in H.263+,' IEEE Trans. Circuits Syst. Video Technol., vol. 8, no. 6, pp. 867-877, Nov. 1998 https://doi.org/10.1109/76.735382
  19. D. Wu, Y. T. Hou, W. Zhu, H. J. Lee, T. Chiang, Y. Q. Zhang, and H. J. Chao, 'On end-to-end architecture for transporting MPEG4 video over the Internet,' IEEE Trans. Circuits Syst. Video Technol., vol.10, no.6, pp. 923-941, Sep. 2000 https://doi.org/10.1109/76.867930
  20. R. Ramani and A. Karandikar, 'Explicit congestion notification (ECN) in TCP over wireless network,' in Proc. Int. Conf. Personal Wireless Communications, pp.495 -499, Dec. 2000
  21. 이상철, 장주옥, 'TFRC 프로토콜의 평균 손실 구간 계산 방식의 비교 평가,' 정보과학회 논문지, vol. 29, no. 5, Oct. 2002