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PDE-PRESERVING PROPERTIES

HENRIK PETERSSON

ABSTRACT. A continuous linear operator T', on the space of en-
tire functions in d variables, is PDE-preserving for a given set
P C C[¢4, ..., &4] of polynomials if it maps every kernel-set ker P(D),
P € P, invariantly. It is clear that the set &(IP) of PDE-preserving
operators for P forms an algebra under composition. We study and
link properties and structures on the operator side &(P) versus the
corresponding family P of polynomials. For our purposes, we intro-
duce notions such as the PDE-preserving hull and basic sets for a
given set P which, roughly, is the largest, respectively a minimal,
collection of polynomials that generate all the PDE-preserving op-
erators for P. We also describe PDE-preserving operators via a
kernel theorem. We apply Hilbert’s Nullstellensatz.

1. Introduction and Preliminaries

We let d be a fixed arbitrary natural number and denote by 7 the
space of entire functions in d variables endowed with the compact-open
topology. Thus 4% is a reflexive Fréchet space and a generating family
of semi-norms is obtained by ||f|ln = supj,<,|f(2)l, n € N. Given
r > 0, Exp, denotes the Banach space of functions ¢ € # such that
lell- = supg [@(¢ )"l < oo, equipped with the norm ||- || thus defined.
The space of exponential type functions, Exp, is the union U,-oExp,
provided with the corresponding inductive locally convex topology. We
recall that the Fourier-Borel transform F, 5 5 A — FA(§) = A(eg), is
a topological isomorphism between # and Exp when ##” is equipped
with the strong topology. Here, and below, e, = e € Exp C 2,
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a € C?, where (2,8) = ¥ z:&;. The Martineau-duality between J# and
Exp is defined by (f, ) = F~o(f).

The complex algebra of continuous linear operators on 2 is denoted
by & = Z(). A convolution operator is defined as a continuous linear
operator that commutes with all translations 7, : f — f(z +a), a € C%.
For a proof of the following well-known we refer to [3]:

PROPOSITION 1. The set of convolution operators on 5,6 = € (),
is a commutative subalgebra of £ and is formed by the operators (D),
¢ € Exp, where o(D)f(z) = (f,ve,) = A7.f) and FA = ¢. The
function ¢ € Exp (A € S#”) is unique for ¢(D).

(Thus there are one-to-one correspondences between all the spaces J#”,
Exp and €.) We let & denote the subalgebra C[¢;, ..., ;] of Exp formed
by the polynomials and remark that if P € & C Exp, then P(D)
is the differential operator obtained by replacing each variable &; by
0/0z; in P. Note also that, for any ¢(D) € €, ¢(D)eq = p(a)e, and
the transpose of ¢(D) is given by “multiplication by ¢”, and is simply
denoted by ¢. We recall Malgrange’s Theorem [7]: Every convolution
operator p(D), ¢ # 0, is surjective.

DEFINITION 1. A continuous linear operator 7" : € — J¢ is PDE-
preserving for a set P C Exp if Tker (D) C ker p(D) (i.e. ker (D) is
invariant under T') for all ¢ € P. The set of PDE-preserving operators
for P is denoted by &(P).

By Malgrange’s Theorem, Im ¢ = ker ¢(D)* and in view of this it is
not difficult to prove that T € &(P) iff 'T is IDEAL-preserving for P in
the sense that T" € .Z(Exp) and every principal ideal Im ¢ = Exp-¢, ¢ €
P, forms an invariant set under . Consequently, T + T defines a one-
to-one correspondence between €(P) and the set of IDEAL-preserving
operators for P. Further, for any set P, &(P) forms a subalgebra of &
and hence J# is an €(P)-module in a natural way. In turn, ¥ forms a
(commutative) subalgebra of &(P).

The objective in this note is to study how properties of the set P, of
algebraic nature, can be translated to the algebra and ring &(P) and
vice versa. In particular we shall apply Hilbert’s Nullstellensatz. (We
recall the close connection between the zero-set Z(P) = {a : P(a) = 0}
of, say, a polynomial P and the corresponding kernel-set ker P(D).)

For our purposes we divide the study into two parts, exposed in
Sections 2 and 3 respectively, and in the following way: In Section 2
we investigate PDE-preserving properties on the operator side. In the
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main theorem, Theorem 2, we describe PDE-preserving operators. In
fact, every element of . has a unique symbol (kernel) (Theorem 1) and
we describe the symbols for PDE-preserving operators. In Section 3, we
study polynomial sets P C & in terms of PDE-preserving properties.
The reason for restricting the study to polynomial sets is that we want to
make use of the nice algebraic properties of & (UFD, Noetherian etc.)
and theorems like Hilbert’s Nullstellensatz. Moreover, in this way we
link operator theory and algebraic geometry. In particular, given a set
P C £, a natural question to ask is for what polynomials Q) do we have
that every operator in &(P) is also PDE-preserving for (. And, in the
other direction, can we find a minimal collection B C & that generate
P (or O(P)) in the sense that &(P) = O(B). Based on these questions
we introduce notions such as the PDE-preserving hull, P, and basic sets
for a given set P, which is the largest, respectively a minimal, collection
of polynomials that generate IP, see Definitions 2 and 5 respectively. As
a measure of how reducible a set P € £ is in the context, we define
(Definition 6) the PDE-preserving dimension of P. The main theorem
in Section 3, Theorem 5, gives a necessary and sufficient condition for a
polynomial to be in P.

In the last section, Section 4, we propose some possible lines of further
investigations. Our discussion raises several open problems ~ some are
formulated more explicitely and others.

The previous study on PDE-preserving operators, has been concen-
trated on describing PDE-preserving operators, also for other spaces
than s [8, 10, 9]. In particular, the following characterization results
are known: We let H denote the set of homogeneous polynomials in &
and H, denotes the projector f = Y <o fm = fn in S onto the set
of n-homogeneous polynomials, &, where Y >0 fm is the power-series
expansion of f € ## about the origin. Now:

PROPOSITION 2. (See [9, 10].)
(1) 6(2) =%,
(2) O(H) is formed by all operators of the form
$(D)f = 3" Hupn(D)S,
n>0

where the sequence ® = (y,,) in Exp satisfies ||¢n||m < CM™ for
some C, M, m > 0 and is unique.

(Note that if ¢ € Exp, then ¢(D) = ®(D) € € where ® = (¢, ¢, ...).)
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As we have pointed out, the study under consideration links algebra
(algebraic geometry) and operator theory. We believe that the best
applications can be found based on this link. We give an example of one
application from the invariant subspace theory, to the reader that wants
more details on this topic, we refer to [3]:

ExAMPLE 1 (Hypercyclicity). We shall prove (Theorem 2) that if
T € O(p), ¢ # 0, then T “almost” commutes with ¢(D) in the sense
that ¢(D)T = TW (D) for some operator T¥) € &, which is unique
(by Malgrange’s Theorem) and is called the derivative of T with respect
to ¢. Now, if T € £ is hypercyclic and f a corresponding hyper-
cyclic vector, i.e. the orbit {f,Tf,T?f,...} is dense in J#, it follows that
T() also is hypercyclic and @(D)f is a hypercyclic vector. Thus, by
studying PDE-preserving properties, and corresponding derivatives, of
hypercyclic operators, we may obtain new such operators. In particular,
a well-known theorem of Godefroy & Shapiro states: Every ¢(D) € €,
¢ ¢ C, is hypercyclic [3]. In view of this result, it is of interest to find
hypercyclic operators outside %, see also [1]. In fact, in [1] it is proved
that in the case of one variable T);, where T, f(2) = f'(A\z+D), forms a
hypercyclic operator if; (i) A = 1 for some n > 1 and b € C is arbitrary,
and if (ii) |A| > 1 and b = 0. We note that T, = ®(D) € &(H) where
® = (pn(€) = £efPA™), 50 Thyp ¢ € if A #£ 1. Thus, with \,b € C as in (i)
or (i), T/{i) also forms a hypercyclic operator for any non-zero P € H.
With P(€) = £™, i.e. P(D) = D™, we deduce that T\, = A™T};, hence
A™Ty.p is a hypercyclic operator and f(™ a corresponding hypercyclic
vector for any such vector f for Th,;. (Note also that Thp € O(E™ — &)
for any a € C and positive n € N if A = 1. But TE: —o) - T.b, so this
does not provide us with any new hypercyclic operators, we conclude
instead that f{™ — af is hypercyclic for T if f is.)

To the readers convenience, we conclude this introduction by invoking
a list of basic notations that we have or shall introduce:

€, Exp {Entire functions}, {Exponential type functions}
— d variables;

P, P,, H {Polynomials}, {n-homogeneous P € &}, U, %,
— d variables;

Z, € {continuous linear operators},
{convolution operators}(on J#).
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o(P) The set of PDE-preserving operators for P
(Definition 1, p. 574);

P The PDE-preserving hull of P (Definition 2, p. 581);

P,, P,  The set of non-units, respective the non-zero elements,
in P,

Pg {P/S : P € P} where S € & is a common divisor for P;

[P] {[P] : P € P} where [P] = {Q: P, Q associates in &}
(p. 581);

1P|l The number of elements, i.e. equivalence classes, in [P];

(P), (P) The ideal generated by P in &2 respective in Exp;
V(P) The algebraic set in C? defined by P;
dimpP The PDE-preserving dimension of P (Definition 6, p. 591).

2. Properties and characterization of PDE-preserving oper-
ators

Our first objective is to establish necessary and sufficient conditions
for an operator T" to be PDE-preserving for a given ¢ € Exp (Theorem
2). Since O(P) = Nyepl (), this will give information about &(P) for
an arbitrary set P C Exp.

LEMMA 1. A set in Exp is bounded iff it is contained and bounded
in some Exp,,.

Proof. Using that F is a topological isomorphism, it suffices to prove
that any bounded set A C " is mapped into some Exp,, and is bounded
there. Thus we must prove that there are constants M,n > 0 such that
[A(ee)] < Me™él for all A € A and & € C?. Since J# is barrelled, A is
equicontinuous, hence there is a neighborhood of the origin U = U, =
{f : | flln € €} in S such that A C UO. Now, |leclln < €™l = M(¢)
and hence ee¢ /M (&) € U for all £ and our claim follows. O

We denote by & the set of entire mappings P = P(z,¢), in 2d vari-
ables (z,£) € C? x C%, with the following property: For every n > 0
there are m = my,, M = M,, > 0 such that ||P(-,&)|l, < Me™¢! (ie., by
Lemma 1, {P(z,") : |z2| < n} forms a bounded set in Exp for all n).

THEOREM 1 (Kernel-Theorem). T — P(z,£) = e~ *8Te,(z) defines
a bijection between £ and &. P is called the symbol for T, we write
T = P(-,D) and have that Tf(z) = (f, P(z,-)e;). The symbol R € &
for P(-, D)Q(-, D) is given by R(z,&)=e~*4/(Q(-,£)eg, P(2,")es).
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Proof. We prove that P(z,£) = e‘(z’QTeg(z) € G for any given T €
Z. Clearly, P is entire in 2. From Teg(z) = Te,(¢) it follows that
P is entire in ¢ and bounded as required. Indeed, C% 3 z — e, € Exp
and T : Exp — Exp are continuous and hence Lemma 1 gives that
P € &. Next, let P € & and define T by Tf(z) = (f, P(2,)e,). It
is easily checked that T € ¢ and e‘(z’g)Teg(z) = P(z,£). Thus, the
map £ 3 T +— e (#8)Te:(2) € & is onto and by the fact that {e:
¢ € C%} forms a total set in J#, it is one-to-one. The last statement is
elementary. 0

REMARK 1. Note that the transpose of T = P(-,D) is given by
T(€) = (P(-,€)ee, p) and, by reflexivity, we obtain the entire alge-
bra .Z(Exp) of continuous linear operators on Exp in this way. Thus,
Theorem 1 is also a kernel-theorem for .#(Exp). The symbol for any
¢(D) € ¥ is of course .

The following division-theorem is crucial:

LEMMA 2. Let 0 # ¢ € Exp, P € & and assume P(z,§) = ¢(£)Q(z,§),
where Q(z,-) € Exp for all z € C%. Then Q € &.

Proof. ¢(D) is surjective and hence the transpose, ¢ : ¥ — @9, is an
injective strict morphism on Exp for the weak topology o(Exp, .5#) [4,
Prop. 3.13.3]. Thus, the inverse, ! : Im ¢ — Exp is weakly continu-
ous. Consequently, z — ¢~ 1P(z,-) = Q(z,-) is continuous for the weak
topology on Exp. Thus {Q(z,-) : |2| < n} forms a bounded set in Exp
for any given n and Lemma 1 gives that @ is bounded as required. It
remains to prove that @ is entire in z. For fixed z and j, P)(z,-) =
(P(z + sej,-) — P(2,))/s € Imy and Pg(2,-) — 0;P(z,) € Exp in
Exp as s — 0in C. (Here ej, j = 1,...,d, denote the standard unit basis
vectors in C¢ and 8; = 0/8z;.) Since Im ¢ is closed, we deduce from this
that 0; P(z,-) = ¢Q;(z,-) for some Q;(z,-) € Exp. Thus, if Q(s) denotes
the analogue of P;), Q()(2,-) — Q;(2,-) = ¢ H(Pry(2,-) — 8;P(2,-))
which proves that 9;@ exists and by Hartog’s Theorem, @ is entire in
z. UJ

THEOREM 2 (Characterization-Theorem). Let ¢ € Exp and T =

P(-,D) € Z. Then the following are equivalent:

1) T is PDE-preserving for ¢,
2) o(D)T = S¢(D) for some S € &L,
3

) ¢le(€ + D)P(-,€)(2) in &, ie., p(§ + D)P(-,£)(2) = p(£)Q(2,€)
for some Q € &. (Here p(€ + D) = (1¢p)(D) €

(
(
(
(
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If ¢ # 0, then the operator S is unique and is called the derivative of
T € O(yp) with respect to ¢ and is denoted by T\). (We justify this
terminology in Example 2.)

Proof. The uniqueness of S when ¢ # 0, follows by the surjectivity of
(D). Further, if ¢ = 0, all the equivalencies hold true so assume ¢ # 0.
Now, @(D)Teg(z) = ¢(D)P(-,E)ec(z) = e (¢ + D)P(-,€)(z). Thus
3 is equivalent to that ¢ divides the symbol for ¢(D)T. Hence 2 and 3
are equivalent and since 2 trivially implies 1, it suffices to prove that if
1 holds, then ¢|R in & where R(z,&) = ¢(D)Tes(z) (€ &). For fixed
z € C¥let \,(f) = p(D)Tf(z). Then ), € s and F,(€) = R(z,£).
We prove that F), € Im ¢ = ker p(D)*. But for any f € ker ¢(D),

(£, FAz) = A(f) = (D) f(2) =0
since T € O(p). Thus, for every z € C? there is a unique Q(z,-) €

Exp such that R(z,€) = ¢(£)Q(z,£), £ € C%. Lemma 2 completes the
proof. (]

ExXAMPLE 2. If T' = ®(D) = > Hppn(D) € O(H), see Proposition
2, and P € H\ {0} is m-homogeneous, then TP = &™)(D) ¢ #(H),
where ®™ = (¢n1m) [10, Theorem 7]. Thus, TP only depends on
m, not on P € Pp,. (This shift behaviour of the derivative, in this
special case, is what we think justifies our terminology “the derivative”
in Theorem 2. Especially, T = 3 ( H,, € O(H) is the Taylor projector of
order r, that maps f € 5 onto its Taylor polynomial of order r at the
origin, and T(F) is thus the Taylor projector of order r — m if P € &,
and m < r.)

H is multiplicative closed in the sense that H-H C H. From Example
2, O(H) is invariant under T + TF)| P € H \ 0, and we shall see that
the corresponding holds for any multiplicative closed set P:

THEOREM 3.

(i) Let ¢,y € Exp where ¢ # 0 and assume T € O(p). Then T €
O () if T) € 6(1), and if this holds and ¥ # 0, then T(P)¥) =
T(ev)

(ii) If P C Exp is multiplicative closed, then T*) ¢ G(P) for all T €
O(P) and 0 # ¢ € P.

(iii) Let P C Exp be &?-absorbing in the sense that &2 - P C P. Then
T € O(P) iff T is of the form T = ¢(D) + S where p(D) € € and
Im S C Nyep ker (D). Thus, if T € 6(P), then TW) = ¢(D) € €,
0 # ¢ € P, for some ¢ € Exp.
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Proof. We prove (i) and we may assume 7 # 0. Assume T € &(p) N
O(py), thus o(D)T = T¥)p(D) and [py](D)T = T®¥)[py](D). Since
[e¥](D) = %(D)p(D), we obtain %(D)T®)p(D) = T¥¥)¢h(D)p(D) and
thus, by the surjectivity of (D), %(D)T¥) = T¥¥)¢y(D). Hence, T®) €
O (v) with derivative T(#¥). The converse part is elementary and left to
the reader.

(ii) follows from (i} and we prove (iii). The sufficiency is elementary
since Y(D)(p(D)+S) = p(D)Y(D) = p(D)p(D) for all ¢y € Pif Im § C
Npkery(D) and (D) € €. So assume T € O(P) and assume first
that P = &2 -4, ¥ # 0. By (i), and in view of Proposition 2, T €
O(P) if and only if T®) € €. Thus ¢(D)T = TWy(D) = (D)p(D),
where ¢(D) = TW € %, and hence T = (D) + S where Im S C
ker(D) = Npker (D). Next let P be an arbitrary 4?-absorbing set,
thus P = Up#¢, and let 0 # 6,9 € P. Then, from what we just
have proved, T = T®) + § and T = T® + L, where 7@ TW) ¢ ¢
and ImS C ker¢(D),ImL C keryy(D). We prove that 7 = 7®)
and hence that S = L. But &(D) = T — T®) ¢ ¥ and Ime(D) C
ker (D) + ker ¢p(D) C ker[¢py](D). This is impossible if € # 0 in view
of Malgrange’s Theorem. Accordingly, T(® = T®) = (D) and T =
©(D)+ S where Im S C ker ¢(D) Nker y(D). By the arbitrary choice of
¢ and ¢, Im S C Npker (D). a

In particular, (iii) implies that the derivative T does not depend
on ¢ € P if P is S-absorbing. Further, for any set P C Exp, the set
of operators S € £ such that ImS C Npker+y(D) forms a subspace
I = I (P) of £ (in fact, a right ideal in .¥), thus .£/.# is well-defined.
So if €/ denotes the image of ¢ under the canonical map . — £/.#,
then (iii) can be formulated: T € O(P)if T+.¥ € €/.# (wewriteT € €
mod ). The most important example of #-absorbing sets P, is when
P forms an ideal I in Exp or in &2. We note also that if I is an ideal in
Exp, then Npkery(D) = (UrIm )t = It, thus:

COROLLARY 1. Let I be an ideal in Exp or in &. Then T € €O(I) iff
T € ¢ mod #(I). In particular, if I is an ideal in Exp, then S € #(1)
fImS CIt e Im SO

3. PDE-preserving properties of a set P

In this section we concentrate our study on when P C &2, which we
motivated in the introduction.
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3.1. PDE-preserving hull

DEFINITION 2. Let P be a given set of polynomials. The PDE-
preserving hull of P, is the largest set PP in &2 such that 6(P) = 6(P),
ie,P={Pe P:0(P)C G(P)}. (For larger expressions {-}, we use
the notation {-} for the hull.) A set P’ C & is said to generate P (or
O(P)) when P’ = P, or equivalently, when &(P) = &(P).

It is convenient to note the following:
PCP, P=P, PCP=PFCP.
Thus P is PDE-conver in the sense that it coincides with its hull.

ExXAMPLE 3. We claim that H is PDE-convex. Indeed, we must show
that to any Q € & \ H there is a T = ®(D) € O(H) (see Proposition 2)
and f € ker Q(D) such that Tf ¢ ker @(D). But by choosing f of the
form f = e, where Q(a) = 0, it is an easy exercise to construct such an
operator 7', i.e., sequence .

The primary objective in this section is to describe the hull P of a set
P. The main result, Theorem 5, requires some ground work.

Division defines a partial order relation in &2 if we identify polyno-
mials that are associates in &?. More precisely, let [£?] denote the set
of equivalence classes in &2 under the equivalence relation; P ~ Q if P
and @ are associates, i.e. Q is a non-zero scalar multiple of P. If [P]
denotes the equivalence class containing P, we obtain a partial order
relation < in [#] by; [P] < [Q] when P|Q in &. Note that [0] (= {0})
and [1] (= {units in £}) is a largest, respectively a smallest, element in
[#]. Since & is a UFD, gcd P = inf[P] (greatest common divisor) and
lem P = sup[P] (least common multiple) exist for any set P C & where
[P] = {[P]: P € P}. If [S] = gcd P we write simply S = gcd P and anal-
ogously for the lem. Let us also define gcdP = 0 and lemP = 1 when
P = {). Note that lemP # 0 if and only if [P] is a finite set and 0 ¢ P.
By |M| we denote the number of elements in a set M and ||P|| = |[P]|
if P C £. In view of our purposes, it is convenient to introduce the
notations B, =P\ [0] =P\ {0} and P, =P\ [1].

REMARK 2. If P € P, then [P] C P and [P’] = [P] implies P/ = P.
Further, for any set P, 0,1 € P and consequently P =B, = P,.

LEMMA 3. If P,@Q € &, then ker Q(D) C ker P(D) if and only if Q|P
in .
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Proof. The necessary part is obvious so we assume ker Q(D) C ker
P(D) and prove that Q|P. By Malgrange’s Theorem, Im ¢ = ker (D)~
for any ¢ € Exp and hence, ker Q(D) C ker P(D) is equivalent to Im Q D
Im P. Thus Q|P in Exp. But since a rational function is an entire
function iff it is a polynomial (consequence of Liouville’s Theorem and
Lemma [11, 1.8.1]), the lemma follows. O

PROPOSITION 3. Let P C & and assume Q € P. Then ged P, |Q if Q
is not a unit and Q|lem P, if Q # 0. In particular, |P|| < oo iff ||P|| < oo.

Proof. Put S = gcd P, and assume @ is not a unit. In view of Lemma
3 we must prove that ker S(D) C ker Q(D). Assume not. Then there
is an fo € ker S(D) \ ker Q(D). (Note that ker S(D) C Np, ker P(D).)
Choose @y ¢ ker@Q(D)t = ImQ (possible since @ ¢ [1]) and define
Tf = (f,o0)fo- Then ImT C Np, ker P(D) so T € 6(P). But if f €
ker Q(D) and (f, o) # 0, Tf ¢ kerQ(D) and consequently T' ¢ £(Q).
Thus Q ¢ P which is a contradiction.

Next we assume 0 # @Q € P and prove that Q|L = lemB, ie.,
ker Q(D) C ker L(D) (Lemma 3). Assume not. Then there is an fy €
ker Q(D) \ ker L(D). (Note that Up, ker P(D) C ker L(D)). By Hahn-
Banach Theorem, there is a ¢g € Exp =~ 5 such that (fg, ) = 1 and
@o € ker L(D)* = Im L. In particular, pg € Np, (ker P(D)1). Thus with
Tf = (f,po0)ea, where Q(a) # 0, T € O(P). But Tfy = e, ¢ ker Q(D)
so T ¢ 6(Q) which contradicts that Q € P.

Finally, if ||P|| < oo, then L = lcm P, # 0 and from what we just have
proved, |P|| < |[{[P]: P|L or P = 0}| < co. O

DEFINITION 3. A set P C & is said to be D-relatively prime when
Npepker P(D) = {0}. P is pre-D-relatively prime when Pg = {P/S :
P € P}, where S = ged P, forms a D-relatively prime set.

In particular, a single-element set {P} is D-relatively prime iff P is
a unit in &2. Clearly, every D-relatively prime set P is relatively prime.
By Proposition 4, that follows, the converse holds if (and in fact only
if) d = 1, accordingly - every set in & is pre-D-relatively prime when
d=1.

We introduce some notation. We shall let (P) and (IP) denote the
ideals in Exp and 42 respectively generated by a set P C £ C Exp.
Z(P) denotes the zero-set {a € C?: P(a) = 0} for P € & and by V(P)
we denote the algebraic set NpZ(P) defined by P C &, and now:
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PROPOSITION 4. Let P C &, then the following are equivalent:
(i) P is D-relatively prime,
(i) (P) = Exp,

(iii) V(P)

)
)

/\

=0,
(iv) (P) =2,
(v) PiQ1+...+P,Qn = 1 for some Q; € 2, P; € P (a so called Bezout
identity).

If d =1 then (i-v) are all equivalent to IP being relatively prime.

Proof. That P being D-relatively prime is equivalent to (ii) follows
by the following observation (P) = (UpImP)*L = (Npker P(D))L,
since Im P+ = ker P(D). The equivalence between (iv) and (v) is of
course obvious, and that (iii) and (iv) are equivalent is a consequence
of Hilbert’s (weak) Nullstellensatz, see [2, p. 20]. Next, if a € V(P)
then e, € Npker P(D). Consequently, (1) implies (iii). Since every D-
relatively prime set is relatively prime, it remains only to prove that the
converse holds true when d = 1. But a set P of one-variable polynomials
is relatively prime iff the elements of P have no common zeros, i.e. when
(iii), and thus (i), holds true. O

EXAMPLE 4. For any polynomial P, the set {P, P+1} is D-relatively
prime. {&;,&} forms a relatively but not a D-relatively prime set. Fi-
nally, {£1,& + 1,€1&} is an example of a D-relatively prime set which
is not pairwise relatively prime.

It follows from Proposition 4 that every D-relatively prime set P
contains a finite subset which is also D-relatively prime. Another conse-
quence of the proposition is that _(ﬁ) = Exp actually implies (P) = Exp
and thus — there is no proper dense ideal in Exp that is generated by
some set of polynomials.

PROPOSITION 5. Let S € &2 and P C 4. Then the following are
equivalent:
(1) ker S(D) = Npker P(D),
(2) S|P for all P € P and the set Pg = {P/S : P € P} is D-relatively
prime,
(3) S = ged P and P is pre-D-relatively prime.

Proof. Clearly, 3 implies 2. We assume 1 and prove that 3 holds.
Since ker S(D) C ker P(D) for all P € P, § is a common divisor for
the set P by Lemma 3. If S = 0, then P = {0} and thus Pg = {1 =
0/0} is D-relatively prime and S = gcdP. Next, assume S # 0. Let
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f € npker Ps(D), Ps = P/S, and choose g with S(D)g = f. Then
P(D)g = Ps(D)f = 0 for all P € P. Hence g € ker S(D), ie. f =
S(D)g = 0. Thus Pg is D-relatively prime and we must prove that
S = gcdP. Assume S|P for all P € P and 8’ = SR. We must prove
that R is a unit. Assume not. Then R(D)f = 0 for some f # 0. But
for any Ps = P/S € Pg, Ps(D)f = Ps/(D)R(D)f = 0 and hence, since
Pg is D-relatively prime, f = 0 which is a contradiction, thus 3 holds.
Assume 2. Since S|P for all P € P, we deduce from Lemma 3 that
ker S(D) C Npker P(D). Next, let f € Npker P(D). Then if Ps € Pg,
Ps(D)(S(D)f) = P(D)f = 0. Hence S(D)f = 0. This proves that 2
implies 1 and hence the proposition. O

The attentive reader may have already noted that Proposition 5 ex-
tends parts of Proposition 4 and, for the sake of consistency, we remark
that it is easily checked that a set P is pre-D-relatively prime iff (P) forms
a principal ideal ((gcdP)) in Exp or equivalently, (P) is a principal ideal
((gedP)) in 2.

If P=PFQ; i=1,..n, for some polynomials P;, Q;, then, by the
definition of the lem, lem{ P; };| P but we need the following more general:

LEMMA 4. Let P = {P,...,P,} € & be a finite set and assume
¢ = Pip; = ... = Php, € Exp for some ¢; € Exp. Then L|p in Exp,
where L = lemP (€ £2).

Proof. We may assume 0 ¢ P. Assume first that n = 2, P = {P,Q},
and put S = gedP. Then P/ = P/S and Q' = Q/S are relatively
prime and L = PQ' = P'Q = PQ/S. Thus we only have to prove
that if P(§)u(€) = Q(§)v(§), i-e. P/(§u(§) = Q'(§)v(§), for some u,v €
Exp, then @'|u (or equivalently P’|v) in Exp. Assume first that P’ is
irreducible. Then P’ is not a factor of @’ and hence there is a point
a € Z(P') such that Q'(a) # 0. (Indeed, by Hilbert’s Nullstellensatz,
an irreducible polynomial R’ is a factor of R € £ iff Z(R') C Z(R).)
Thus w = u/Q’ is holomorphic in a neighborhood of @ and P'w = v is
entire. Since P'(a) = 0 and P’ is irreducible, w is an entire function
by [11, Lemma 1.7.3]. Now, u = Q'w and since u € Exp, w € Exp by
(11, Lemma 1.8.1] (see also [6, p. 183]). Next, if P/ = P|...P, where
P/ € & are irreducible, we repeat these arguments for P|, and obtain
Pj...Plu = Qwi, and then for Pj etc. and obtain finally that u = Q'w
for some w € Exp.

Now, using that lem{Py,..., Pht1} = lem{L,, P41}, where L, =
lem{P,, ..., P,}, the lemma follows by induction. ]
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LEMMA 5. If P ={P,...,P,} C & and L =lemP, then ker L(D) =
>-.ker Py(D). (In particular, ker[P(D)...P,(D)] = 3, ker (D) if P is
pairwise relatively prime.)

Proof. In view of Lemma 4, the ideal N; Im P; in Exp is generated by
L and hence

ker P;(D) + ... + ker P, (D)
= (Usker Pi(D))** = (n; Im P)*
= Im Lt = ker L(D). O

THEOREM 4. If P C &2, then:

(1) S=gedPe P iff P is pre-D-relatively prime or S is a unit.
(2) L=1lemP € P.

Proof. The necessary part in 1 follows by Proposition 5 and we prove
that if S = gedP is a non-unit element of ]f”, then Pg is D-relatively
prime, i.e., ker S(D) = Npker P(D). Assume not. Then there is an
fo € Npker P(D) \ ker S(D). Choose @g ¢ ker S(D)t = Im S (possible
since S ¢ [1]) and put Tf = (f,w0)fo. Then T € O(P) \ €(S) which
contradicts that S € P.

Next we prove 2. We may assume that L # 0 and thus that P is finite,
P = {P,..., P}, and P, # 0. By Lemma 5, ker L(D) = ), ker P;(D)
and hence,

Tker L(D) C T ker Pi(D) C ker L(D) = ker L(D)

for any T € O(P). O

EXAMPLE 5. Let P = {P, @} be a pair of non-constant polynomials
and put S = gedP and L = lemP. Then L = P'Q’S, where P’ =
P/S and Q' = Q/S, and Theorem 4 gives that [S,L] C P if Pg =
{P',Q'} is D-relatively prime and [L] C PP if not. In fact, we shall see
(apply Theorem 7 and Corollary 4 below) that these are the only possible
additional non-constants in P. Summing up; if P’,Q’ are D-relatively
prime, then P is given by [0,1,5, P,Q, L] (S may here be 1), and if P’
and Q' not are D-relatively prime, P =[0,1, P,Q, LJ.

COROLLARY 2. Let P = { P, ..., P,} be a finite set of non-zero polyno-
mials. Then the product P,...P, € P iff the polynomials P; are pairwise
relatively prime.
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Proof. If the elements P, are pairwise relatively prime, then L =
lemP = P,...P, and hence P,...P, € P by Theorem 4 (note that L # 0).
Conversely, assume P = P,...P, € P. Then, by Proposition 3, P|L and
since L|P, P and L are associates. This implies that P;, i = 1,...,n, are
pairwise relatively prime. O

LEMMA 6. Every finitely generated ideal in Exp is closed. In partic-
ular, (P) is closed if |P|| < oo where P C £2.

Proof. Assume the ideal I in Exp is generated by the elements ¢, ...,
¢n, € Exp. Consider the operator ® : S — "™ defined by ®f =
(p1(D)f, .., on(D)f). Then I is the range of the transpose ® : Exp™® —
Exp when the product spaces ##" and Exp™ are put into duality in the
natural way. Thus we have to prove that Im!® is closed. Now, Exp”™
and Exp are the duals of the reflexive Fréchet spaces S#" (product
topology) and % respectively and thus, by Banach’s Theorem, or see
(4, Prop. 3.17.17], Im'® is closed iff Im ® is closed. But every ¢;(D) is a
closed range operator in view of Malgrange’s Theorem and hence Im ®
is closed. O

We are now ready to describe the hull P when ||P|| is finite. Since
any constant polynomial belongs to P, it suffices to describe the non-
constants in P.

THEOREM 5. Let P C & and assume ||P|| < co. Let Q = Ij°...I}"
(non-constant) be the factorisation of @ € & into irreducible factors
I; € & and put P, = PN (I]*) = {P € P: I[*|P}, i < n. Then the
following are equivalent:

(i) QeP,

(i) Q € (P;) for all i,
(iii) (Q) = Ni(Ps).

In particular, if Q € P, then for every irreducible factor I; there is a
P € P such that I; is a factor of P of the same multiplicity r; as for Q
and moreover, = lem{gcd P;};.

Proof. We prove that (i) implies (ii) so assume Q € P. Assume that
Q € (P;) does not hold true for some %, say, ¢ = 0. Since (P;) are
ideals and (P;) = (P;) (Lemma 6), Q € (P;) is equivalent to ImQ C
(P;) = (Np, ker P(D))*. Thus, our assumption means that there is an
fo € Np, ker P(D) outside ker Q(D). Next, assume first that P\ Py # @
and put Lo = lem(PP \ Pg). Then Ly # 0 and we claim that there is a
@0 € (ker Lo(D))* \ ker Q(D)~. Indeed, if not, then Q|Lg which is not
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possible by the definition of P (Ij is a factor of Ly of order < rg). Now,

with Tf = (f, o) fo, T € O(P) \ £(Q) which contradicts that @ € P. If

P\ Py is empty, we choose ¢y ¢ ker Q(D)* and obtain a contradiction

in the same way. Thus Im Q C (P;) = (I;) for all  so (ii) holds true.
Conversely, assume Q € (P;) = (P;), i.e. ImQ C (Np, ker P(D))*, for

all 2. Then

(1) ker @Q(D) 2 Np, ker P(D), i<n.

Let T € O(P) be arbitrary. We must prove that T ker Q(D) C ker Q(D).

For any ¢ we have that ker I'*(D) C ker P(D) for all P € P;. Hence,

Tker I'' (D) C Np, ker P(D) C ker Q(D), i < n.
By Lemma 5, ker Q(D) = >, ker I'*(D) and we obtain

(2) TkerQ(D)C T kerI[*(D) C ker Q(D) = ker Q(D).

Next, it is trivial that (iii) implies (ii) and we prove the converse. But
every element ¢ of N;(P;) is a multiple of all the elements I* and we
deduce from Lemma 4 that Q = lem{I;*}; divides ¢ in Exp, i.e. ¢ € (Q)
and thus N(P;) C (Q). Now, if (ii) holds true we clearly must have
equality so (ii) implies (iii) and thus, (i-iii) are all equivalent.

The last statement now follows. Since assume that, for some i, ev-
ery element of P; contains the factor I] i1 Then so does every poly-
nomial in (P;) which contradicts that Q@ € P in view of (ii). Fur-
ther, Q € (P;) implies I;?|ged P;|Q. Thus, lem{gcdP;};|Q but also
Q = lem{I]* };|lem{gcd P;};, hence @ = lem{ged P; };. O

REMARK 3. We remark the following reformulation. The primary
decomposition of the ideal (@) is Ip N ... N I, where I; = (I]*), and
P; = PNI;. Thus, Q € P iff P meets every primary component I; of (Q)
and in such a way that (Q) € N;(PN1;). Moreover, note that for any
set PC £, if Q € (P) then @ must vanish on V(P). Thus, by Hilbert’s
Nullstellensatz, @ € (P) implies that the polynomial @ belongs to the
radical rad(P), i.e., @™ &€ (P) for some m > 1. (See also Section 4.)

We obtain that the following properties must be shared by any two
sets that generate the same set.

COROLLARY 3. Assume P = B, where ||P|| < oo (and thus ||B|| < oo),
then:
(1) V() =V(B.),
(2) lemP, = lem B,,
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(3) gcd Py = ged B,
(4) P, is pre-D-relatively prime iff B, is.

Proof. 1 is elementary in view of (ii) in Theorem 5 and by noting
that it suffices to prove 1 with B = P. 2 follows by Proposition 3 and
Theorem 4. 3 is a consequence of that S is common divisor of P, iff
it is a common divisor for the non-units in P, which follows by (ii) in
Theorem 5. Finally, 3 and Theorem 4 implis 4 (note that 4 reduces to
1 when gcd B, = ged By = 1). O

In the following corollary we describe how to extend the hull.

COROLLARY 4. Let P C & and assume ||P|| < co. (i) Assume L € &
is a multiple of all the elements in P,, i.e. lemB,|L, then {PU{L}} =

PUIL]. (i) If S| ged B, then {PU {S}} =P U [S] = SP.s.

Proof. (i) We may assume L # 0 and thus lemP, # 0. Clearly, it
suffices to prove that {PU{L}} C PU[L]. Solet @ = I}°..I'> be
a (non-constant) polynomial in the hull of PU {L}. By Theorem 5,
Q € {((PU{L});) for all i. Now, if P; = @ for some ¢ = iy, we must
have that (PU {L});, = {L} and hence @ € Im L. By Proposition 3,
Q|lem(PU{L}), = L, hence Q and L are associates. On the other hand,
if P; # 0 for all 4, then, since L is a multiple of all the elements in P;,
((PU{L});) = (P;) for all &. Thus Q@ € N;(P;) and hence Q € P by
Theorem 5. .

(i) Next we prove that P U [§] equals SP.s. Let Q € PU[S]. Then
S|Q and we must prove that Q' = Q/S € Bs. We may assume Q' is
not a constant and thus Q € P. So let I be an irreducible factor of Q'
of multiplicity v > 1. Then I is a factor of Q of multiplicity r > 7'
Thus, in view of Theorem 5, @ = >, ¢; P; for some ¢; € Exp and where
I"|P; = P!S € P, for all i. We deduce that P/ € Pog and I"|P! so
Q € lP/’.Tg Conversely, let Q = SQ' € Sﬁg, where Q' € ]I;.Tg We may
assume Q' ¢ [1], i.e. Q ¢ [S], and must thus prove that Q € P. Let I
be an irreducible factor of @ of multiplicity » > 1. Then I is a factor
of Q' of multiplicity v < r. If ¥’ > 0 we obtain with arguments as
above that Q € ({P;};) where P; € P and I"|P;. On the other hand,
if 7/ = 0, then I is a factor of S of multiplicity 7. Now choose an
arbitrary irreducible factor J of Q’. Then Q' € ({F/}:) where P} € Pog
and J|P]. Thus, P; = SP] € P, I"|P; and Q € ({P;};). Hence, by virtue
of Theorem 5, Q € P and we have proved that PU [S] = SP,s. Finally,
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with P’ = PU{S}, the hull of P,5 equals ]P/’.\s, so from what we just have
proved, P = P/ U [S] = SP/,g = SB,5. O

The rest of this subsection is devoted to give a global description of
the hull for some special cases.

PROPOSITION 6. Assume ||P|| < co and that P satisfies the following
property: For every irreducible polynomial I and n > 1 such that I is
a factor of some P € P of multiplicity n, the set PN (I") = {P € P :
I"| P} is pre-D-relatively prime. Then P is formed by constants and the
elements of the form lem{gcd P;};, where P; are pre-D-relatively prime
subsets of P.

Proof. By Theorem 4, any element of the described form belongs to
P. Thus, we must prove that every non-constant Q € P is of the form
lem{gcd IP;};, where every P; is a pre-D-relatively prime set in P. But
our assumption implies that every set P; in Theorem 5 is pre-D-relatively
prime and the last part of the same theorem completes the proof. O

Since every set in & is pre-D-relatively prime when d = 1, we obtain:

COROLLARY 5. Assume ||P|| < oo and that d = 1. Then PP is formed
by constants and the elements of the form lem{gcd P;};, P; C P (i.e. the
elements V; Aj P, P;; € P, where PV Q = lem{P,Q} and PAQ =
ged{P, Q}).

We repeat, Corollary 5 is a consequence of the fact that every subset
of & forms a pre-D-relatively prime set. The problem that occurs when
d > 2, is that the irreducible factors in the “UFD-factorisation” may
not be pairwise D-relatively prime. This suggests:

DEFINITION 4. A set P C & is said to admit a D-prime factorisation
if there is a set J, of pairwise D-relatively prime polynomials, such that
for every non-constant P € P, P € [J°...J.] for some J; € J and r; > 1.

(Thus when d = 1 the ordinary factorisation into irreducible factors
works in the sense that we may choose J as the set of irreducible poly-
nomials.) Clearly, if P admits a D-prime factorisation, so does every
subset of P, and we can now extend Corollary 5:

COROLLARY 5 (continued). Assume P admits a D-prime factorisation
(d is arbitrary and ||P|| < c0). Then every subset of P is pre-D-relatively

prime and thus, P is formed by constants and the elements of the form
lem{gcd P;};, P; C P.
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Proof. In view of Proposition 6, we only have to prove that every set
B that admits a D-prime factorisation forms a pre-D-relatively prime
set. By noting that Bg, S = ged B, admits a D-prime factorisation if B
does, it suffices to prove that every relatively prime set B that admits
a D-prime factorisation, forms a D-relatively prime set. Assume, for
simplicity, that B = {P,Q}. Our assumption means that we can write
P = P,..P, and Q = Q1...Qm where P;,Q; are D-relatively prime for
all ¢, 7. In view of Proposition 4, V(P;) NV (Q;) = @ and we must prove
that V(P) NV (Q) is empty. But V(P) = U;V(F;), and analogously for
@, hence this follows by D’Morgan’s rule. Analogous arguments hold
for a general B. O

PROPOSITION 7. Assume ||P|| < oo, then if P admits a D-prime

factorisation, so does P. Thus, for any subset B C P, B is formed by
constants and the elements of the form lem{gcd B;};, B; C B.

Proof. By Theorem 5, every non-constant element of P is of the form
lem{gedP;}i, P; C P, and hence any “representing set” J for P also
works for P. M

3.2. Basic sets

Given a set P C &7, it is then a natural question to ask if we can find
a “small” set B that generates P. This suggests:

_ DEFINITION 5. A set B C & is said to be basic if B' C B implies
B C B (i.e. 6(B) C &(B')). We say that a basic set B is a basic set for
P, or O(P), if B generates P.

It is convenient to note that a set B is basic, is equivalent to any of the
following;:

1. Forall Pe B, P ¢ {B\ {P}f.

2. Forall Pe B, 0(B) C O(B\ {P}).

3. For all P e B, {B\ {P}} ¢B.

In particular, in view of Remark 2, a basic set B does not contain any

constant polynomial and the elements of B belong to different equiva-
lence classes in [Z7], thus ||B|| = [B|.

THEOREM 6. Let P C & and assume ||P|| < oo. Then there is a basic
set B for P formed by elements from P.

Proof. By assumption, there is a finite set P’ = { Py, ..., P,} C P such
that P = P’. By successively removing elements from P’, one at the
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time, we finally get a set B C P’ which cannot be reduced any further
such that the hull is preserved, i.e. a basic set for P. U

DEFINITION 6. Let P C &2 and assume first that |P|| < co. The PDE-
preserving dimension, dimp P, of P is defined by dimp P = min{||B|| =
|B(} where B runs through all basic sets for P. A basic set B for P with
minimal cardinality, i.e., with |B| = dimp P, is called a minimal basic
set for P. If ||IP|| = oo, then dimp P = oo.

(When |[P|| = oo we do not know if there exist any basic sets for P,
however, if a basic set B exists we must have ||B|| = oo (Proposition
3), which motivates dimp P = 0. See Section 4 for further remarks on
this.)

By Theorem 6 we always have dimpP < ||B,||. We shall see that
basic sets for a given set P with ||P]| < oo, may indeed contain different
number of elements — thus not every basic set for P is minimal.

EXAMPLE 6. Let P = {P,Q} be formed by two non-constant polyno-
mials that not are associates. Then P is basic. In view of Example 5, if
B is any other basic set for P, B is necessarily of the form B = {R, S},
where [P,Q] = [R,S]. Thus dimpP = 2 and, in particular, any two
basic sets for P contain the same number of elements, which is not true
in general, see Example 7.

THEOREM 7. Let P = {Py,...,P,} and assume the polynomials P,
are non-constant and pairwise relatively prime. Then P is basic and P is
formed by constants and associates of distinct products of the elements
P

Proof. That P is basic is trivial in view of Theorem 5. The description
of the hull follows by Proposition 6. Indeed, if the set PN (I™) is non-

empty, it contains one element only and thus forms a pre-D-relatively
prime set. ]

EXAMPLE 7. Let P = {P,@, R} and assume the polynomials in P
are non-constant, and pairwise D-relatively prime. By Theorem 7, the
non-constants in P are formed by [P, PQ, PR,QR, PQR)]. Further, P
is basic and in view of Example 5 it is necessarily a minimal basic set.
Another basic set for P is B = { PQ, PR,QR}. Indeed, B C [P and hence
B C P. On the other hand, from P € {PQ, PR} C B and analogously
for () and R, we deduce that P C B and hence B = . That B is basic
follows by Example 6 and Theorem 6. Now, based on similar arguments,
another basic set for P is given by B’ = {P,Q, PR, QR}. Summing up,
dimp P = 3 and P, B are minimal basic sets while B’ is not.
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IfP ={Py,.., P,} admits a D-prime factorisation (recall that if d = 1
this is true for any P), it follows from Proposition 7 that dimp P is the
smallest number of elements B in P (i.e. elements of the form V; A; Qy5,
Qij € B) such that {Vi Aj Qij : Qij € B} D P,. (Note that the
problem to find such minimal set B and number |B|, has an analogue
formulation in any UFD %, say, Z = Z.) Our next objective is to
describe this dimension dimp P in the extremal case when P is formed
by n non-constant pairwise D-relatively prime polynomials, and we start
by formulating the following corollary of Theorem 7:

COROLLARY 6. Let P = {P,..., P} be a pairwise D-relatively prime
set. Then P is formed by constants and associates of distinct products of
the elements P; and, more generally, for any subset B C P, B is formed
by constants and the elements of the form lem{gcdB;};, B; C B (i.e,
Vi Aj Qij, Qij € IB).

Now, let P be formed by n non-constant pairwise D-relatively prime
polynomials. We deduce that the dimension of such a set P only de-
pends on the size n = |P| = ||P||, not on the polynomials P; (and not
on d), and we put d, = dimpP. (Clearly d; = 1 and from Examples
6 and 7, do = 2 and d3 = 3.) In fact, let P(X) denote the powerset
of a set X formed by n elements, say, X = X, = {1,...,n}. Then d,
is clearly the smallest number of elements in P(X) such that the set of
finite intersections of the elements contains the single-element sets {z}.
Another description of d,, that we shall use, is following. We may iden-
tify the set of non-zero elements of P with Z% (binary codes of length
n) in a one-to-one way. Indeed, we let Q = PP, € P correspond to the
element ¢ = (1,1,0,...,0) etc. and thus, in particular, the P;:s corre-
spond in this way to the basis elements ¢; = (0, ...,1,0...) respectively.
Moreover, with this identification, the gcd between two elements in Pis
obtained by the corresponding product in Z§. Thus, d,, is the smallest
number of elements in Z% such that the set obtained by taking distinct
products contains the basis elements e;. Thus to compute d, is a pure
combinatoric problem and we give a proof of how to obtain d, based
on the famous Sperner’s Theorem (1928). The proof is constructive in
the sense that it describes how to obtain corresponding generating and
basic sets.

THEOREM 8. d, = min{m : ( ) > n for some k < m}. Thus if
m > 1 is an integer such that ( ) > n for some k < m, then there is

an m-element set B = {Q1, ..., @m} C P that generates P. If m < n, we
may choose B as a basic set.

3“3
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Proof. Assume n < (7) and let A7* denote the subset of P(Xp,)
formed by k-element sets. Then |A'| = (7) > n so we may choose,
and enumerate, n elements S1,...,S, € A7'. Now, the idea is to de-
fine elements ¢; € Z%, i = 1,...,m, such that if S; = {a1,...,ax} then
da; -, = €i- But this is simply obtained by letting ¢; be one at the j:th
coordinate iff i € S;. (If some j ¢ U;S;, ¢; = 0 and we may “remove”
this element.) Thus d, < m. We note that we obtain a basic set in this
way if the following holds true: For every x € X, there is an element S;
such that z € S; and S; \ {z} C S; for some . In particular, if m < n
we may construct such a list S1,...,.S, by letting the first m sets S; be
S1={1,...,k}, Sa={2,...,k,k+1},..., Sm={m,1,....k — 1}.

Next, let ¢1,...,¢m, m = d,, be a minimal basic set. Then to each
basis element e; we way find a set S; = {au,...,oq} € P(Xy) such that
Ga---Ja; = €i. Clearly, these subsets S;, ¢ = 1, ..., n, must satisfy S; € S;
when i # j (since e; # ge; for all g if i # j). Now, by Sperner’s Theorem
[12, Theorem 6.3], we necessarily have that n < () where k = [m/2].
This completes the proof. (]

For the sake of clarity, we illustrate the algorithm, described in the
first part of the proof:

ExAMPLE 8. Let n = 6, ie,, P = {P,...,, Ps}. From Theorem 8
we deduce dg = 4 ((3) = 6 > n). Let us determine a generating set
by applying the algorithm in the proof. Thus, we choose a list: §; =
{1,2},{1,3},{1,4},{2,3},{2,4}, S = {3,4} from A3 Next we define
elements ¢;, 7 < 4, by ¢ = (1,1,1,0,0,0), ¢ = (1,0,0,1,1,0) etc.
The corresponding polynomials ¢; — Q; € £ (Q1 = PIPPs, Qg =
Py PyPs,...) form then a generating family B for P. Since ||B|| = dg =
dimp P, B is a minimal basic set for P.

Note that if P is formed by n non-constant pairwise relatively prime
polynomials, then d,, < dimp P.

We conclude by describing what happends with the dimension if we
“remove” common factors:

PROPOSITION 8. Let P C & and assume that ||P|| < oo and that S
is a non-constant common divisor for B,. Then
dimpP =dimpPg if S¢P,
dimpPg < dimpP < dimpPg+1 if S€P (implies S = gcdP.).

Proof. We prove that if B generates P, then Bog generates Pog (note
that S is a common divisor for B,). But, in view of (ii) in Corollary 4,
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SIB/.Tg = S}I;.\S and consequently ﬁ.\s = E;:g Hence, we always have that
dimp By < dimp P.
On the other hand, assume B generates P,g. Then, by Corollary 4,

(3) {SB. U {S}F = 5B, U[S] =P US].

Thus if B is basic and S € P, SB U {S} generates P and consequently,
dimp P < dimp Bg + 1. Thus the second line holds true and it remains
to prove that dimpPFs > dimpP when S ¢ P. So assume S ¢ P. It
suffices to prove that SB, generates P. Assume first that S € P. In
view of (3) we only have to prove that the hull of SB, contains S. But
Sep implies that PB,g is D-relatively prime. Further, the assumption
S ¢ P implies Pygo = Pos and thus B, is D-relatively prime by Corollary
3. Consequently, ﬁ\z ged SB, and SB, is pre-D-relatively prime so by
Theorem 4, S € Bos. But, in the same way, if S ¢ [P we cannot have
that SB, is pre-D-relatively prime so S is not in the hull of SB,. In
view of (3) this implies that SB, generates P. O

EXAMPLE 9. Consider the set P = {S, P,Q}, where S = gcd{P, Q}.
Then PBos = {1,P',Q’}, where P = P/S and Q' = Q/S. We assume
S,P',Q" ¢ [1]. If P',@Q are D-relatively prime, dimp P = dimp Pog = 2.
However, if P’, Q' not are D-relatively prime, dimp P = 3 = dimp Bg +
1.

4. Conclusions and remarks

Basic SETS WHEN ||P|| 1S INFINITE: At this point we do not know
whether a general set P C & with ||P|| = co admits a basic set or not.
A “standard” approach, to prove such an existence, via Zorn’s Lemma,
contains obstacles. Indeed, if B is a maximal (with respect to inclusion)
basic set in P, it is not true in general that B generates P:

ExaMPLE 10. Assume P,Q € & are non-constant and relatively
prime. Then with P = {P,Q}, P = [0,1, P,Q, PQ]. Now, consider the
set B = {P,PQ}. Then B is basic, and is not contained in any other
basic set in P, but B = [0,1, P, PQ] # P.

EXAMPLE 11 (On basic sets for H). Assume d = 1. A basic set for
H is then formed by the monomials M = {("},>1. Indeed, given n > 1,
thenwithT =T, = 2Hp, 1, T € O(M\{£"})\ O(£™) so M is basic. Next,
assume d > 1 and consider the set B formed by the elements I where
n > 1 and [ is an irreducible homogeneous polynomial. Recall that if 0 #
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P € H then all the irreducible factors of P are homogeneous and thus,
B = H (Theorem 4). (In fact, B generates H finitely in the sense that
every P € H belongs to the hull of finite subset F C B.) It is not known
whether B is basic or not. (Note that the set M of monomials {£*},cne
does not form a basic set for H since £* = lem{&*}; € {&7*,...,£*}
and {7} © M\ {€°} if oy, 5 # 0 for some ¢ # j.) However, from
Theorem 5 we deduce that B forms a finitely basic set in the sense that
every finite subset F C B is basic.

EXAMPLE 12 (On basic sets for 42). Consider the set B formed by all
elements of the form I™ where n > 1 and I is an irreducible polynomial.
Then, as in the previous example, we deduce that B generates &2 finitely
and B forms a finitely basic set. However, again, it is not known if B is
an ordinary basic set.

Let us also note that for any finite subset F of &, { #Z\F} = P =P,
ie. O(P \F) =€ (Proposition 2). Indeed, for any given P € & there
is a polynomial R such that PR, P(R+1) € #\F. Since R,R+1 are
D-relatively prime, P = ged{ PR, P(R+ 1)} € {#Z \F}\.

Examples 11 and 12 suggest the formulation of the following open
problem:

CONJECTURE 1. Let P C &, is it true that Q € P implies Q € F for
some finite set F C P.

Note that if the answer is affirmative, then every finitely basic set is in
fact basic. Noteworthy is also that if we could prove that Theorem 5
also holds when ||P|| = oo, then Conjecture 1 has indeed an affirmative
answer. Conversely, if our conjecture holds true, the equivalencies (i-iii)
in Theorem 5 extends to the case when ||P|| is infinite.

EXTENSIONS: Let us consider how the study and results, can be ex-
tended to other spaces (of power-series) and other operator classes.

We denote by # the entire ring, [[,~q %Pn, of formal power-series in
d variables. Thus .Z is a reflexive Fréchet space if we equip % with the
product topology. Here we assume that every finite-dimensional space
Pn is endowed with its unique Banach space topology. Next, let us
provide & = @, >0%, with the direct sum topology. Since every &, is
finite-dimensional, the topological- and the algebraic dual of &2 coincide.
In fact, the Martineau-duality (page 574) extends to the pair (%, &)
and P’ = P* = F, see [11, Section 1.7]. Hence, and most importantly,
every subspace, and thus every ideal, of &2 is closed. As a consequence
it follows that every differential operator P(D) # 0 (P € £2), acting on
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Z, is surjective since F is Fréchet and the transpose ‘P(D) : & — P is
“multiplication by P”, which thus is a one-to-one closed range operator.
We remark that Proposition 4 can be extended by: P C &2 is D-relatively
prime iff Np ker P(D) = {0}, where ker P(D) denotes the kernel of P(D)
acting on %.

Now, we define the PDE-preserving hull Py (with respect to &) of
a set P C 2 in the same way as we defined P. Thus, if € (P) denotes
the algebra formed by all PDE-preserving operators T' € Z(.%) for P,
Pz = {P e P : Oz(P) C 6z(P)}. With arguments as in Section 3 (in
particular, the analogue of Lemma 6 extends by the discussion above),
we obtain the following analogue of Theorem 5:

ProPosITION 9. Let P C & and assume ||P|| < oco. Let I°...I0"
be the factorisation of @ € & \ C into irreducible factors I; € 2,
thus (Q) = Ny(I]*) (primary decomposition). Then the following are
equivalent:

(i) Q=IP..Il" € Pg,

(i) Q € (P;) for all i where P, =P N (I]') = {P € P: I[*| P},
(i) (@) = Mi(P).

Since (P) C (P) we deduce that Pz C P. However, if d = 1, a poly-
nomial Q € (P) iff Q € (P) and consequently Pz = P in this particular
case, see also below.

We remark, briefly, that an extension in the same spirit is to deal
with the dual pair EXP = N, oExp, and &), formed by zero-exponential
type functions respective germs of analytic functions (convergent power-
series). (The bilinear form is defined by the formula in [11, p. 28] for
the Matrineau-duality.) Recall that EXP, provided with the “standard”
topology generated by the semi-norms || - ||, is a reflexive Fréchet space
and & is a UFD and Noetherian [5, Chapter 6]. It seems as if the
analogue of Proposition 9 holds for the PDE-preserving hull of a set
P C & with respect to EXP, which is defined as ]f”g, and by which
we mean that we use the factorisation in &y and replace (-) by the
corresponding ideals generated in &y.

Another type of extension is to study the hull of a set P C £? with
respect to, say, the Weyl-algebra o/. (Recall that 7 is the subalgebra of
& = Z(H#) formed by the operators of the form ) P,p2°DP where
the sum is finite, i.e., the operators with symbols P = P(z,£) € & that
are polynomials in both z and £.) More precisely, put &7 (P) = €(P)N&/
and Py = {P € 2 : &/ (P) C &/(P)}. Since, for any set P, &/ (P) C &(P)
we have that P C ]f”d and so, I@’g cPhc ]IA’}A/ — when do we have equalities?
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Finally we remark that it is possible to define the hull P, let us call it the
smooth hull, of a general set P C Exp: P= {p € Exp : O(P) C 6(y)}.
Thus P = 2 NP, and the following problem was partially posed by the
referee: For what sets P C &2 do we have that P =P?
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