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MATRIX PRESENTATIONS OF THE
TEICHMULLER SPACE OF A PAIR OF PANTS

Hong CHAN Kim

ABSTRACT. A pair of pants X(0, 3) is a building block of oriented
surfaces. The purpose of this paper is to formulate the matrix
presentations of elements of the Teichmiiller space of a pair of pants.
In the level of the matrix group SL(2, R), we shall show that an odd
mumber of traces of matrix presentations of the generators of the
fundamental group of £(0, 3) should be negative.

1. Introduction

A hyperbolic structure on a smooth surface M is a representation of
M as a quotient /T of a strictly convex domain © C H? by a discrete
group I' € PSL(2,R) acting properly and freely. If x(M) < 0, then the
equivalence classes of hyperbolic structures on M form a deformation
space ¥ (M) called the Teichmiiller space.

Let M be a compact connected smooth surface and m = #1(M) the
fundamental group of M. Given a hyperbolic structure on M, the ac-
tion of m by deck transformation on the universal covering space M of
M determines a homomorphism = — PSL(2,R) called the holonomy
homomorphism and it is well-defined up to conjugation in PSL(2,R).
Thus the Teichmiiller space (M) has a natural topology which iden-
tified with an open subset of the space Hom(w, PSL(2,R))/PSL(2,R)
the orbit space of homomorphisms 7 — PSL(2,R). Since holonomy
homomorphisms 7 — PSL(2,R) are isomorphic to their images, the
generators of m can be presented by the conjugacy classes of matrices in
PSL(2,R).
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Let M = ¥(g,n) be a compact connected oriented surface with g-
genus and n-boundary components. Then M can be decomposed as a
disjoint union of 2g — 2 + n pairs of pants 3(0,3). Thus a pair of pants
¥(0,3) is a building block of an oriented surface M. The purpose of
this paper is to formulate the matrix presentations of elements of the
Teichmiiller space of a pair of pants %(0, 3).

In Section 2, we recall some preliminary definitions and describe the
relation between the deformation space ® (M) of (G, X )-structures on a
smooth manifold M and the orbit space Hom(w, G)/G. In Section 3, we
define the hyperbolic elements of SL(2,R) and PSL(2,R) and classify
the locations of fixed points and principal lines of hyperbolic elements.
In Section 4, we calculate the matrix presentations of elements of the
Teichmiiller space T(2(0,3)). In terms of SL(2,R), we shall show some
relations among the traces of the matrix presentations of the generators
of the fundamental group of (0, 3).

2. Deformation space of (G, X)-structures

Let X be a smooth manifold and G a connected Lie group. An action
of G on X is called strongly effective if g1, g2 € G agree on a nonempty
open set of X, then g1 = g2. By this requirement, for any nontrivial
g € G, the set of fixed points Xy = {x € X | g- 2 = z} is nowhere
dense in X. Each element g of G is called a (G, X)-transformation. Let
2 be an open subset of X. A map ¢: Q@ — X is called locally-(G, X) if
for each component W C , there exists a (G, X )-transformation g € G
such that ¢lw = glw. Since G acts strongly effectively on X, above
element g is unique for each component. Clearly a locally-(G, X)) map
is a local diffeomorphism.

Let M be a connected smooth n-manifold. A (G, X)-structure on M
is a maximal collection of coordinate charts {(Uy, %)} such that

1. {Ua} is an open covering of M.
2. For each «, ¥4 : Uy — X is a diffeomorphism onto its image.
3. If (Uq, ¥a) and (Ug, 9g) are two coordinate charts with U, NUp #
(0, then the transition function
Ygo¥a’ : Ya(Ua NUs) — ¥5(Ua NUp)
is locally-(G, X).

Now we give two examples of (G, X)-structures.
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ExaMPLE 2.1. Let H? = {z € C | Im(2) > 0} be the upper half com-
plex plane. Then SL(2,R) acts on H? by

a b az+b
(2.1) (c d>'z_cz+d'
Since we have A-z = (—A) - z for any A € SL(2,R) and z € H?, the
Lie group PSL(2,R) = SL(2,R)/+1 acts strongly effectively on H2. A

(PSL(Z, R), Hz)—structure on a surface M is called a hyperbolic structure
on M.

EXAMPLE 2.2. Let RP? be the space of all lines through the origin
in R3. For a nonzero vector v in R3, [v] denotes the corresponding
point in RP?. Let B be an element of GL(3,R), the group of linear
transformations of R3. Then B preserves lines through the origin and
induces a projective transformation of RP2. Thus GL(3,R) acts on RIP?
by

(2.2) B - [v] = [Bv].

Since the scalar matrices R* € GL(3,R) acts trivially on RP?, the Lie
group PGL(3,R) = GL(3,R)/R* acts strongly effectively on RP2. A
(PGL(3,R),R]P’2)—structure on a surface M is called a real projective
structure on M.

A manifold with a (G, X)-structure is called a (G, X)-manifold. Let
N be a (G, X)-manifold. If f: M — N is a local diffeomorphism of
smooth manifolds, then we can give the induced (G, X)-structure on M
via f. In particular every covering space of a (G, X )-manifold has the
canonically induced (G, X)-structure.

Let M and N be (G, X)-manifolds and f : M — N a smooth map.
Then f is called a (G, X)-map if for each coordinate chart (U, vy) on
M and (V,%y) on N, the composition ¢VOfO¢U SYu(FHV)NU) —
Yy (f(U)NV) is locally-(G, X).

A (G, X)-manifold M can be developed into X as follows. For more
detail, see Thurston’s book [8]. Let p : M — M denote a universal
covering map of M and «w the covering transformation group of M.
We shall identify 7 with the fundamental group m(M) of M. Since
M is simply connected, the coordinate charts on M can globalize to
define a (G, X)-map dev : M — X, called the developing map. The
covering transformation v € 7 defines an automorphism of M. The
corresponds to coordinate changes in the atlas for the (G, X)-structure
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result a homomorphism h : # — G such that the following diagram
commutes.

M dev X
(2.3) 7| I

M — X

dev

The homomorphism h : 7 — G is called the holonomy homomorphism.
The image I' = h(r) C G is called the holonomy group. The image
Q = dev(M) C X is called the developing image. The pair (dev,h)
consisting of the developing map and the holonomy homomorphism is
called a developing pair.

Suppose (dev’, k') is another developing pair commuting above di-
agram (2.3). Then there exists g € G such that dev’ = g o dev and
h' = 14 0 h where ¢4 : G — G denotes the inner automorphism defined
by g ; that is, H'(7) = (tg0h)(7) =goh(y)og™".

it x 0 X
(2.4) 1| [ e

M X X
dev g

Thus the developing pair (dev, h) is unique up to the G-action by com-
position and conjugation respectively.

Consider a pair (f, N) where N is a (G, X)-manifold and f : M - N
is a diffeomorphism. Then M admits the induced (G, X)-structure via
f. The set of all such pairs (f, N) is denoted by A(M). Then A(M) is
the space of all (G, X)-structures on M. We say two pairs (f/, N’) and
(f,N) in A(M) are equivalent if there exists a (G, X)-diffeomorphism
g : N' — N such that ¢’ o f’ is isotopic to f ; that is, there exists a
diffeomorphism g : M — M, which is isotopic to the identity map Ips
such that the following diagram commutes :

ML N
J v
M—f—» N

The set of equivalence classes A(M)/~ will be denoted by D(M) and
called the deformation space of (G, X )-structures on M.
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DEFINITION 2.3. Let M be a connected smooth 2-manifold. The
deformation space of the hyperbolic structures on M is called the Te-
ichmiiller space and denoted by T(M). The deformation space of real
projective structures on M is denoted by RP?(M).

The deformation space D (M) is closely related to Hom(w, G)/G the
orbit space of homomorphisms ¢ : # — G. Let M be a compact con-
nected smooth manifold. Since M is compact, the fundamental group 7
of M admits finite generators vy, - - - , m with finite relations Ry, - - - , Rg.
For example if M is X(g,n), that is a compact connected smooth sur-
face with g-genus and n-boundary components, then 7 admits 2g + n
generators Ay, By,..., Aq, By, C1,...,Cy with a single relation

R=Cy,---C1By A ByAg--- BT'AT'B1A = .

From the correspondence of the homomorphism ¢ : # — G to the image

of generators g1 = ¢(11), -+ , gm = &(¥m), Hom(7, G) may be identified
with the collection of all m-tuples (g1,...,9m) C G™ satisfying
Rl(gla---agm) = [7 s Rk(gla"'agm) =1

The group G acts on Hom(w, G) by conjugation ; that is, for g € G and
¢ € Hom(m, G), the action g - ¢ is defined by

(g-d)7)=god(r)og™
where v € 7. Taking the holonomy homomorphism of a (G, X )-structure
defines a map
hol : ®(M) — Hom(r, G)/G
which is a local diffeomorphism. See Goldman [3] and Johnson [5] for
details.

Let M be a hyperbolic surface. Then the developing map dev is
a diffeomorphism from M onto a convex domain Q = dev(M) c H?
and the holonomy homomorphism A is an isomorphism from 7 onto a
discrete subgroup I' = h(7) C PSL(2,R) which acts properly and freely
on . Thus if a compact connected smooth surface M has a hyperbolic
structure, the M is diffeomorphic to the quotient 2/T". Therefore the el-
ement of the Teichmiiller space (M) will be identified with a conjugacy
class of Hom(w, PSL(2,R)).

If M has a real projective structure, then generally the developing
map is just a local diffeomorphism and the developing image may be not
convex. A domain Q C RP? is called convez if there exist a projective
line ¢ ¢ RP? such that @ C (RP? — ¢) and € is a convex subset of
the affine plane RP? — ¢ ; that is, if z,y € Q, then the line segment



560 Hong Chan Kim

Zy lies in Q. By definition, RP? itself is not convex. A real projective
structure on M is called convez if the developing map dev : M —
RP? is a diffeomorphism onto a convex domain in RP2. The following
fundamental theorem is from Goldman’s paper [4].

THEOREM 2.4. Let M be a real projective surface. Then the following
Statements are equivalent.

1. M has a convex real projective structure.

2. M is projectively diffeomorphic to a quotient Q/T" where Q C RP?
is a convex domain and I' C PGL(3,R) is a discrete group acting
properly and freely on Q.

DEFINITION 2.5. The Goldman space G(M) is the subset of RP%(M)
consisting of the equivalence classes of convex real projective structures.

The Goldman space G(M) is an analogue of the Teichmiiller space
ZT(M). The Goldman space G(M) is a component of RP*(M) and the
restriction of hol : RP?(M) — Hom(w, PGL(3,R))/PGL(3,R) to G(M)
is an embedding onto an open subset.(Choi and Goldman [2]) It is known
that T(M) embeds into G(M). That means every hyperbolic structure
on M defines a convex real projective structure on M. Similarly as the
Teichmiiller space T(M), the element of the Goldman space G(M) will
be identified with a conjugacy class of Hom(w, PGL(3,R)).

3. Matrix presentations of a pair of pants

An element A of SL(2,R) is said to be hyperbolic if A has two distinct
real eigenvalues. Since the characteristic polynomial of A is f(\) = A2 —
t\ + 1 where t = tr(A), A is hyperbolic if and only if tr(A)? > 4. Thus
a hyperbolic element A in SL(2,R) can be expressed by the diagonal
matrix

(3.1) ( g a91 )

via an SL(2, R)-conjugation where a? > 1.

Let A be an element of PSL(2,R). Since the absolute value of trace
is still defined, A € PSL(2,R) is said to be hyperbolic if |tr(A)] > 2. It is
known that A is hyperbolic if and only if A has two distinct fixed points
on OH?2. The following theorem is due to Kuiper [7].

THEOREM 3.1. Let M be a compact connected oriented hyperbolic
surface. Then every nontrivial element of holonomy group I' C PSL(2,R)
is hyperbolic.
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Let M = X¥(g,n) be a compact connected oriented surface with g-
genus and n-boundary components. If x(M) = 2 — 2g —n < 0, then
there exist 3¢ — 3 + n nontrivial homotopically-distinct disjoint simply-
closed curves on M such that they decompose M as the disjoint union
of 2g — 2 4+ n pairs of pants ¥(0,3). Thus a pair of pants ¥(0,3) is a
building block of an oriented surface M. For more detail, see Wolpert’s
paper [9].

The goal of this section is to find an expression of the elements of the
Teichmiiller space F(3(0, 3)) of a pair of pants. Since T(X(0,3)) embeds
into Hom(7, PSL(2,R))/PSL(2,R), we should calculate the matrix pre-
sentations of the conjugacy classes of Hom(m, PSL(2,R)).

First we consider the positions of fixed points of hyperbolic elements
in SL(2,R).

LEMMA 3.2. Suppose A, B € SL(2,R) and P € GL(2,R) satisfying
B = PAP™L. If z € H? is a fixed point of A, then w = Pz € H? is a
fixed point of B.

Proof. Since we have Bw = (PAP7')(Pz) = P(Az) = Pz = w,
w = Pz is a fixed point of B. t

The principal line of a hyperbolic element A € SL(2,R) or PSL(2, R)
is the A-invariant unique geodesic in H2. And it is the line joining two
fixed points of A. Since the principal line has a distinct direction, one
of the fixed points of A is called the repelling fixed point and the other
is called the attracting fixed point. For more easy understanding, see
Figure 1, or Beardon’s book [1].

d —c d
are hyperbolic elements of SL(2,R). Then we have the following rela-
tions.

1. Det(A) = Det(B)
2. Tr(A) = Tr(B)
3. If z is a fixed point of A, then —z is a fixed point of B.

PROPOSITION 3.3. Suppose A = ( Z b ,and B={ ¢ b )

Proof. Let P = <é _01 ).Then we can calculate
-1_ (1 0 a b 1 0 _fa =b\ _
rari= (g S ) (0 a) (0 A)=(% 7 )-5
1.240

Therefore the point w = Pz = 5255 = —z is a fixed point of B. O
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—Zy —24 0 Zq Zy
FiGURE 1. The fixed points of the matrices A and B

Thus the principal lines of A and B are symmetric with respect to
the imaginary axis.

Let A = (cl i)l ) € SL(2,R) be a hyperbolic element. We now
consider the location of the principal line of A and the relations of entries

of A.

THEOREM 3.4. Suppose that A is a hyperbolic element of SL(2,R)
and z,, z, are the repelling and attracting fixed points of A. Then

1. 0 < 24, 2r < o0 ifand only if (a—d)c>0,bc<0.
2. 2z < zr ifand only if (a+d)c <0.

0 Za A('w) ’l;) Zr

F1GURE 2. The principal line with 0 < z, < 2, < 00

Proof. Since 2,4, z, are the fixed points of the hyperbolic transforma-
tion A(z) = zjis, they are the roots of the equation
(3.2) c2’4(d—a)z—b=0,
Suppose 0 < zg4, zr < co. First we claim that ¢ # 0. If ¢ = 0, then
1 = det(A) = ad. Thus d = a™! and A(z) = a?z + ab. This yields that
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oo is a fixed point of A(z) since a # 0. It contradicts the assumption.
Since z, + 2z, = Q:—d and z4 - 2, = ‘Tb, it proves 0 < z,, 2, < oo if and
only if (e —d)c>0and be < 0.

Since we have ¢ # 0, the roots z4,2, of the Equation (3.2) can be

expressed by

_(a-d)£/(a+d)? -4
(3.3) Zay Zp = o .

Suppose that the attracting fixed point z, is smaller than the repelling
fixed point z, ; i.e. 24 < zr. Let w be the mid point of the fixed points
zq and 2z, ; i.e. w = (24 + 2r)/2 = (a — d)/(2c). Then the condition
zq < zr is equivalent to A(w) < w. Since we can compute

Aw) —w = a(“g‘cd)+b_<a_~d)

(%2 +d 2c
_ ala~d)+2bc (a—d) _(a+d)?-4
cla + d) 2c 2(a+d)c ’
and (a + d)? > 4, it proves z, < z if and only (a + d)c < 0. This
completes the proof. 0

COROLLARY 3.5. Let A € SL(2,R) representing a hyperbolic trans-
formation of H? and z,, z, the repelling and attracting fixed points of
A. Suppose 0 < z, < 2z, < 00, then a® < d? and bd > 0.

Proof. From the Theorem 3.4, we have the relations (e —d) ¢ > 0 and
(a+d)c < 0. Thus (a — d)(a + d)c? = (a® — d?)c? < 0 implies a2 < d2.
Since z, < z, the image of the origin under A should be positive as in
the Figure 2. That means A(0) = b/d > 0. Thus we have bd > 0. This
also implies b # 0 and d # 0. a

COROLLARY 3.6. Let A € SL(2,R) representing a hyperbolic trans-
formation of H?.

1. Suppose that b > 0. Then 0 < 2z, < 2z < oo if and only if
c<0,d>0, |a| <d.

2. Suppose that b < 0. Then 0 < z, < 2 < oo If and only if
c>0,d<0, |a| < (—d).

Proof. Suppose 0 < 2, < zr < oo and b > 0. Since we have the
relations be < 0, bd > 0 and a? < d?, the condition b > 0 yields that
c¢<0,d>0, and |a| < |d| = d. Conversely the condition |a| < d derives
(a—d) <0, and (a+d) > 0. Since ¢ < 0 we get (a —d)c > 0 and
(a+d)c < 0. Since bc < 0, this induces 0 < 2z, < 2z, < co. We can
prove similarly for the case b < 0. O
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4. Teichmiiller space of a pair of pants X(0,3)

Recall that a pair of pants M = £(0, 3) is a sphere with three holes.
Suppose M is equipped with a hyperbolic structure. Since the holonomy
homomorphism is isomorphic to its image, the fundamental group 7 of
M will be identified with

nm= (A B,CePSL2,R)|R=CBA=1).

A

B ¢

FIGURE 3. A pair of pants M = 2(0,3)

Let A, B,C € PSL(2,R) represent the boundary components of M.
We will find the expression of the generators A, B and C of 7 in terms of
SL(2, R) instead of PSL(2, R) because SL(2, R) is easier to compute and
understand than PSL(2, R). Since the matrices 4, B,C € SL(2,R) are
hyperbolic and represented up to conjugate, without loss of generality,

we can assume 0
B
B”(Oﬂ”)

with 2 > 1. Then B(0) = 0 since

w-z+0 2,

B(z) = ez

Thus 0 is the repelling fixed point and co is the attracting fixed point
of B since u? > 1. By the discreteness of holonomy group, A(0) # 0.

Suppose
a b
a=(2e)

a-0+b
A(D) = =
0) c-0+d 0,

then b # 0. If b= 0, then
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contradicting for A(0) # 0. Suppose tr(4) = A + A~! where A? > 1.
Since a +d = tr(4) = A+ A7, we have d = —a + XA + A~1. Since
det(A) = ad — bc = 1, we obtain

be=ad—1=a(—a+A+ X)) —1=—(a—A)(a— A1)
Thus we have ¢ = —(a — A)(a — A71)b~1 since b # 0. Therefore

A= a b
T\ —(@a=Na=-2HYt —a+ A+ X1 )
Suppose b > 0. Let

(7 )

then
-1 __ a 1
PAP™ = ( —(@a=A)(@-A"1 —a+r+27? )’

0
pPBpt=(# 7 ):B.
(0 W

Similary if b < 0, then there exist

(T &)

such that

— a -1
QAQ™! = ( (@=N)(a—A"1) —a+r+Ar >

QBQ™! = ( ’6 ugl ) =B.

Since R = CBA = I, we can get C = A~'B™!. Therefore the generators
A, B and C of & are expressed by
(4.1)

Az(‘(a—A)c(La~>\‘1) —a+>%+/\_1)’ B:(g “91),

-1/_ - _
42 o= (e he o)
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and

_ Hea+ A+ 27h
(44) ¢ ‘(—Z—%a—x)(a—xl) ‘Z)

As a result, the trace of C is the same for the both cases ; that is
tr(C) = u~H(—a+ A4+ A7) + ap.

Suppose tr(C) = v + v~! with v2 > 1. After some simple computations
we have

(4.5) 6= ((u +2)- ;1;(* + %)) .

Therefore {\, u, v} is a coordinate for the Teichmiiller space T(2(0, 3)),
i.e., the dimension of the Teichmiiller space T(%(0,3)) is 3.

COROLLARY 4.1. Suppose 2, 2, are the repelling and attracting fixed
points of the hyperbolic matrix

A= a 1
T\ —(e=N@=-2x1) —a+r+ 21
with A2 > 1. Then 0 < z, < z if and onlyif a <A l<1<A.

Proof. By Corollary 3.6, we have the relations (a — A\){(a — A7) > 0
and a < |a| < —a + A+ A7L. Suppose (@ — A) > 0 and (a — A71) > 0.
Then 2a > X + A~L. It contradicts the result @ < —a + A + A~!. Thus
the inequalities should be (a — A\) < 0 and (a — A7) < 0. Also we have
—a < la] < —a+ A+ A~L. Thus we obtain 0 < A+ A~L. The assumption
A2 > 1 yields that a < A" < 1 < A Conversely if a < A71 <1 < ),
then we can easily show that Ag; < 0, Az > 0 and |A11]| < As2 where
Ajj is the (7, j)-th entry of the matrix A. O

REMARK 4.2. Thus above matrix A has positive valued trace A+ ~1.

COROLLARY 4.3. Suppose 2y, z, are the repelling and attracting fixed
points of the hyperbolic matrix

A= a -1
T\ (e-AN@=-2A"1) —a+Ar+271
with A2 > 1. Then 0 < 2z, < z, ifand only if A< -1 < A" ! <a.

Proof. It can be proved in the same way in Corollary 4.1. (W

Since A, B,C are hyperbolic elements and the holonomy group is
discrete, the locations of the principal lines of A, B, C should be one of
the the following figures. (Keen [6])
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C
B [ 3 A /\
Zq Zy Wq Wy

0

/C\ A \ B
Wy We 2 Za

0

FIGURE 4. The locations of the principal lines of 4, B,C

The relation of matrices between two diagrams is

a b a —b
A~<cd)<=>A_(_c d)'
Thus without loss of generality, we may assume that 0 < z, < z,.

THEOREM 4.4. Suppose 2z, Wy, 24, W, are the repelling and attracting
fixed points of the hyperbolic matrices A in (4.1) and C in (4.2) with
p? > 1 respectively. Suppose we have 0 < z, < z, and 0 < Wo < Wy,
then a <0, A\>1and A+ A\7! < (—a)(u? —1).

Proof. Let C;; stand for the (7, j)-th entry of the matrix C. Since
0 < wa < wy, we get C12C22 = (—pu)(ap) > 0. Thus we get a < 0.
C12C21 < 0 implies (@ — A\)(@ — A7) > 0. And the condition (Cy; +
C2)Co1 = [p™H—a+ A+ A" +ap] p=(a — N)(a — A7) < 0 implies
(—a + A+ A1) < —ap® Thus we have (A + A1) < (—a)(u? — 1).
(C11 = Cn)Co1 = [pH—a+ A+ A Y —ap]p~ a - N(@a— A7) >0
implies (A + A1) > a(u? + 1). Since A > 1 and a < 0, above condition
trivially holds. Therefore the conditions for 0 < 2, < 2, and 0 < w, <
wr are a <0, A>1and A+ A7! < (—a)(u? - 1). O
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Since the matrix C' is representing a boundary component a pair of
pants, C' is hyperbolic. Thus

tr(C)? = (W (—a+ A+ A7) + au)2 >4.

Multiply both sides by p? > 1 induces ((—a+)\+)\‘1) +au2)2 =
(A2 +a(p? - 1))2 > 4p%. Since (A + A1) +a(p? - 1) < 0, we
have —(A + A7) — a(u? ~ 1) > 2|p|. Therefore the hyperbolic condition
for the matrix C in (4.2) is

(4.6) (=a)(u® ~ 1) > A+ A7) + 2|,

where a < 0, A > 1, and p? > 1.
Now we consider the position of fixed points of the matrix A and C.

THEOREM 4.5. Suppose that A is the hyperbolic matrix in (4.1) with

0 < z4 < 2. Then the fixed points of A are
1 1
_a and zr = P
Proof. By the Equation (3.3),
a—A=-2Hx/A+A1)2-4
—2(a— A)(a— A1)

(26 = A=A £ [A- 271

(4.7) Zg =

Zay Rr =

—2(a—A)(a— A7)

_ (2a-A- /\1):1:(/\ A1)

- —2(a—A)(a— A1)

B 2(a — A1) 2(a— )

T 2(a-MN)(a— A 1) —2(a—A)(a— A1)
1

(A—a) (Al—a)

Since (A —a) > (A™! — a), the attracting fixed point z, of A is 1/(A—a)
and the repelling fixed point z, of A is 1/(A~! — a). O

THEOREM 4.6. Suppose that C is the hyperbolic matrix in (4.2) with
0 < wg < w,. Then the fixed points of C are

E-VD dw—_ E+tVD
0 —a) A T—a) ¢TI a1 —a)

where E = —a(p®+1)+A+A"tand D = (a(p? - 1) + A + )\_1))2—4u2.

Wq =
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Proof. By the Equation (3.3), the fixed points wg, wy of C is

i (za+ A+ A" —apl+ Vp (—a+ A+ A1) +ap? — 4
2uHa—A)(a—A1)

[(—a+ A+ A7) —ap?] £ /[(—a+ X+ A1) + ap?]? — 442
2(a—A)(a—A"1)

[—a(u?2+ 1)+ A+ 27+ V]a(p? — 1) + A+ A1)]2 — 42
20 —a)(A"t —a) '

The fact (A — a)(A\~! — a) > 0 proves the theorem. O

THEOREM 4.7. Suppose the matrices A, B,C in (4.1) and (4.2) have
the relation a < 0, A > 1, u? > 1 and (—a)(p? — 1) > (A + A7) + 2|y
Then {A, B,C} forms generators of the fundamental group = of a pair
of pants (0, 3).

Proof. We should show that 0 < 2, < 2, < w, < w,. By Theorem
4.4, it is enough to show that 2z, < wg. Theorems 4.5 and 4.6 and the
facts (A —a) > 0 and (A~ — a) > 0 yield that 2z, < w, if and only if
2(A —a) < E—+/D ; that is

VD < E—=2(A—a)=(—a)(p®> = 1) = A+ 171,
Since (—a)(u%2—1)=A+A"! > (—a)(u?2~1)=A—A"1 > 0, it is equivalent
to show that
D=((—a)(? = 1) = A=A -4 < (~a)(u® - 1) = A+ 171~

After some calculations we can get ((—a)(p? — 1) — A) > —p2. This is
equivalent to a(u® — 1) < A(u? — 1). Since @ < 0, A > 1 and p? > 1, it
proves the theorem. O

THEOREM 4.8. Suppose the matrices A, B,C in (4.3) and (4.4) have
the relation a > 0, A < —1, u? > 1 and a(p? — 1) > —(A + A1) + 2}ul.
Then {A, B,C} forms generators of the fundamental group m of a pair
of pants.

Proof. This can be proved by the same way in the Theorem 4.7. O

Finally we consider the relations of traces of A, B, and C in SL(2, R).

THEOREM 4.9. Suppose the matrices {A,B,C} in (4.1) and (4.2)
forms generators of the fundamental group m of a pair of pants. Then

1. p is positive if and only if v < —1.
2. p is negative if and only if v > 1.
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Proof. Recall the Equation (4.5) that is the relation among the traces
of the matrices A, B,C and the value a. If we plug in the Equation
(4.5) to the inequality (4.6) representing the hyperbolic condition of the
matrix C, then we obtain (A + A1) + 2{u| < ~p(v+ v~ + (A + 271,
Hence we get the inequality
(4.8) 2pf < —p(v +v7h).

If u is positive, then above inequality (4.8) becomes 2u < —u(v +v71).
Since —y is negative, we have —2 > v+v~1. Therefore v < —1. Similarly
if u is negative, then we have —2u < —u(v +v~1). Since —p is positive,
we get 2 < v 4 v~L, Therefore v > 1. O

REMARK 4.10. Since A, B, C should satisfy the condition (4.6),
1 — -1 2
L +y1-a(A+A 1) +a
—a
1 — -1 2
< + /1 a(2+/\ Y+a

THEOREM 4.11. Suppose the matrices {A, B,C} in (4.3) and (4.4)
forms a generator of the fundamental group n of a pair of pants. Then

1. p is positive if and only if v > 1.
2. p is negative if and only if v < —1.

> 1 if pis positive,

< —~1 if p is negative.

Proof. This can be proved by the same way in the Theorem 4.9. [

Since tr(A) > 2 in (4.1) and tr(A) < —2 in (4.3), we conclude the
following result.

COROLLARY 4.12. Suppose the matrices {A, B,C} are in (4.1) and
(4.2) or in (4.3) and (4.4) which forms generators of the fundamental
group w of a pair of pants. Then tr(A) - tr(B) - tr(C) < 8.

Therefore we cannot have the matrices A, B, C € SL(2,R) which are
representing the boundary components of a pair of pants with all three
positive traces. An odd number of traces must be negative.
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