MATRIX PRESENTATIONS OF THE TEICHMÜLLER SPACE OF A PAIR OF PANTS

HONG CHAN KIM

ABSTRACT. A pair of pants $\Sigma(0,3)$ is a building block of oriented surfaces. The purpose of this paper is to formulate the matrix presentations of elements of the Teichmüller space of a pair of pants. In the level of the matrix group $\mathbf{SL}(2,\mathbb{R})$, we shall show that an odd number of traces of matrix presentations of the generators of the fundamental group of $\Sigma(0,3)$ should be negative.

1. Introduction

A hyperbolic structure on a smooth surface M is a representation of M as a quotient Ω/Γ of a strictly convex domain $\Omega \subset \mathbb{H}^2$ by a discrete group $\Gamma \subset \mathbf{PSL}(2,\mathbb{R})$ acting properly and freely. If $\chi(M) < 0$, then the equivalence classes of hyperbolic structures on M form a deformation space $\mathfrak{T}(M)$ called the *Teichmüller space*.

Let M be a compact connected smooth surface and $\pi = \pi_1(M)$ the fundamental group of M. Given a hyperbolic structure on M, the action of π by deck transformation on the universal covering space \tilde{M} of M determines a homomorphism $\pi \to \mathbf{PSL}(2,\mathbb{R})$ called the holonomy homomorphism and it is well-defined up to conjugation in $\mathbf{PSL}(2,\mathbb{R})$. Thus the Teichmüller space $\mathfrak{T}(M)$ has a natural topology which identified with an open subset of the space $\mathrm{Hom}(\pi,\mathbf{PSL}(2,\mathbb{R}))/\mathbf{PSL}(2,\mathbb{R})$ the orbit space of homomorphisms $\pi \to \mathbf{PSL}(2,\mathbb{R})$. Since holonomy homomorphisms $\pi \to \mathbf{PSL}(2,\mathbb{R})$ are isomorphic to their images, the generators of π can be presented by the conjugacy classes of matrices in $\mathbf{PSL}(2,\mathbb{R})$.

Received January 9, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 32G15, 57M50.

Key words and phrases: a pair of pants, hyperbolic structure, Teichmüller space, holonomy homomorphism, discrete group.

The author gratefully acknowledges the support from a Korea University Grant.

Let $M = \Sigma(g, n)$ be a compact connected oriented surface with g-genus and n-boundary components. Then M can be decomposed as a disjoint union of 2g - 2 + n pairs of pants $\Sigma(0,3)$. Thus a pair of pants $\Sigma(0,3)$ is a building block of an oriented surface M. The purpose of this paper is to formulate the matrix presentations of elements of the Teichmüller space of a pair of pants $\Sigma(0,3)$.

In Section 2, we recall some preliminary definitions and describe the relation between the deformation space $\mathfrak{D}(M)$ of (G,X)-structures on a smooth manifold M and the orbit space $\mathrm{Hom}(\pi,G)/G$. In Section 3, we define the hyperbolic elements of $\mathrm{SL}(2,\mathbb{R})$ and $\mathrm{PSL}(2,\mathbb{R})$ and classify the locations of fixed points and principal lines of hyperbolic elements. In Section 4, we calculate the matrix presentations of elements of the Teichmüller space $\mathfrak{T}(\Sigma(0,3))$. In terms of $\mathrm{SL}(2,\mathbb{R})$, we shall show some relations among the traces of the matrix presentations of the generators of the fundamental group of $\Sigma(0,3)$.

2. Deformation space of (G, X)-structures

Let X be a smooth manifold and G a connected Lie group. An action of G on X is called *strongly effective* if $g_1,g_2\in G$ agree on a nonempty open set of X, then $g_1=g_2$. By this requirement, for any nontrivial $g\in G$, the set of fixed points $X_g=\{x\in X\mid g\cdot x=x\}$ is nowhere dense in X. Each element g of G is called a (G,X)-transformation. Let Ω be an open subset of X. A map $\phi:\Omega\to X$ is called locally-(G,X) if for each component $W\subset\Omega$, there exists a (G,X)-transformation $g\in G$ such that $\phi|_W=g|_W$. Since G acts strongly effectively on X, above element g is unique for each component. Clearly a locally-(G,X) map is a local diffeomorphism.

Let M be a connected smooth n-manifold. A (G, X)-structure on M is a maximal collection of coordinate charts $\{(U_{\alpha}, \psi_{\alpha})\}$ such that

- 1. $\{U_{\alpha}\}$ is an open covering of M.
- 2. For each $\alpha, \ \psi_{\alpha}: U_{\alpha} \to X$ is a diffeomorphism onto its image.
- 3. If $(U_{\alpha}, \psi_{\alpha})$ and $(U_{\beta}, \psi_{\beta})$ are two coordinate charts with $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then the transition function

$$\psi_{\beta} \circ \psi_{\alpha}^{-1} : \psi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \psi_{\beta}(U_{\alpha} \cap U_{\beta})$$

is locally-(G, X).

Now we give two examples of (G, X)-structures.

EXAMPLE 2.1. Let $\mathbb{H}^2 = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$ be the upper half complex plane. Then $SL(2,\mathbb{R})$ acts on \mathbb{H}^2 by

(2.1)
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d} .$$

Since we have $A \cdot z = (-A) \cdot z$ for any $A \in \mathbf{SL}(2,\mathbb{R})$ and $z \in \mathbb{H}^2$, the Lie group $\mathbf{PSL}(2,\mathbb{R}) = \mathbf{SL}(2,\mathbb{R})/\pm I$ acts strongly effectively on \mathbb{H}^2 . A $(\mathbf{PSL}(2,\mathbb{R}),\mathbb{H}^2)$ -structure on a surface M is called a *hyperbolic structure* on M.

EXAMPLE 2.2. Let \mathbb{RP}^2 be the space of all lines through the origin in \mathbb{R}^3 . For a nonzero vector v in \mathbb{R}^3 , [v] denotes the corresponding point in \mathbb{RP}^2 . Let B be an element of $\mathbf{GL}(3,\mathbb{R})$, the group of linear transformations of \mathbb{R}^3 . Then B preserves lines through the origin and induces a projective transformation of \mathbb{RP}^2 . Thus $\mathbf{GL}(3,\mathbb{R})$ acts on \mathbb{RP}^2 by

$$(2.2) B \cdot [v] = [Bv].$$

Since the scalar matrices $\mathbb{R}^* \subset \mathbf{GL}(3,\mathbb{R})$ acts trivially on \mathbb{RP}^2 , the Lie group $\mathbf{PGL}(3,\mathbb{R}) = \mathbf{GL}(3,\mathbb{R})/\mathbb{R}^*$ acts strongly effectively on \mathbb{RP}^2 . A $(\mathbf{PGL}(3,\mathbb{R}),\mathbb{RP}^2)$ -structure on a surface M is called a *real projective structure* on M.

A manifold with a (G,X)-structure is called a (G,X)-manifold. Let N be a (G,X)-manifold. If $f:M\to N$ is a local diffeomorphism of smooth manifolds, then we can give the induced (G,X)-structure on M via f. In particular every covering space of a (G,X)-manifold has the canonically induced (G,X)-structure.

Let M and N be (G,X)-manifolds and $f:M\to N$ a smooth map. Then f is called a (G,X)-map if for each coordinate chart (U,ψ_U) on M and (V,ψ_V) on N, the composition $\psi_V \circ f \circ \psi_U^{-1} : \psi_U(f^{-1}(V) \cap U) \to \psi_V(f(U) \cap V)$ is locally-(G,X).

A (G,X)-manifold M can be developed into X as follows. For more detail, see Thurston's book [8]. Let $p:\tilde{M}\to M$ denote a universal covering map of M and π the covering transformation group of \tilde{M} . We shall identify π with the fundamental group $\pi_1(M)$ of M. Since \tilde{M} is simply connected, the coordinate charts on \tilde{M} can globalize to define a (G,X)-map $\operatorname{dev}:\tilde{M}\to X$, called the developing map. The covering transformation $\gamma\in\pi$ defines an automorphism of \tilde{M} . The corresponds to coordinate changes in the atlas for the (G,X)-structure

result a homomorphism $h:\pi\to G$ such that the following diagram commutes.

$$(2.3) \qquad \begin{array}{ccc} \tilde{M} & \xrightarrow{\operatorname{dev}} & X \\ \gamma \downarrow & & \downarrow h(\gamma) \\ \tilde{M} & \xrightarrow{\operatorname{dev}} & X \end{array}$$

The homomorphism $h: \pi \to G$ is called the holonomy homomorphism. The image $\Gamma = h(\pi) \subset G$ is called the holonomy group. The image $\Omega = \operatorname{\mathbf{dev}}(\tilde{M}) \subset X$ is called the developing image. The pair $(\operatorname{\mathbf{dev}}, h)$ consisting of the developing map and the holonomy homomorphism is called a developing pair.

Suppose (\mathbf{dev}', h') is another developing pair commuting above diagram (2.3). Then there exists $g \in G$ such that $\mathbf{dev}' = g \circ \mathbf{dev}$ and $h' = \iota_g \circ h$ where $\iota_g : G \to G$ denotes the inner automorphism defined by g; that is, $h'(\gamma) = (\iota_g \circ h)(\gamma) = g \circ h(\gamma) \circ g^{-1}$.

$$(2.4) \qquad \begin{array}{ccc} \tilde{M} & \xrightarrow{\operatorname{dev}} & X & \xrightarrow{g} & X \\ \gamma \downarrow & & \downarrow h(\gamma) & \downarrow h'(\gamma) \\ \tilde{M} & \xrightarrow{\operatorname{dev}} & X & \xrightarrow{g} & X \end{array}$$

Thus the developing pair (\mathbf{dev}, h) is unique up to the G-action by composition and conjugation respectively.

Consider a pair (f,N) where N is a (G,X)-manifold and $f:M\to N$ is a diffeomorphism. Then M admits the induced (G,X)-structure via f. The set of all such pairs (f,N) is denoted by $\mathcal{A}(M)$. Then $\mathcal{A}(M)$ is the space of all (G,X)-structures on M. We say two pairs (f',N') and (f,N) in $\mathcal{A}(M)$ are equivalent if there exists a (G,X)-diffeomorphism $g':N'\to N$ such that $g'\circ f'$ is isotopic to f; that is, there exists a diffeomorphism $g:M\to M$, which is isotopic to the identity map I_M such that the following diagram commutes:

$$\begin{array}{ccc}
M & \xrightarrow{f'} & N' \\
g \downarrow & & \downarrow g' \\
M & \xrightarrow{f} & N
\end{array}$$

The set of equivalence classes $\mathcal{A}(M)/\sim$ will be denoted by $\mathfrak{D}(M)$ and called the *deformation space* of (G,X)-structures on M.

DEFINITION 2.3. Let M be a connected smooth 2-manifold. The deformation space of the hyperbolic structures on M is called the *Teichmüller space* and denoted by $\mathfrak{T}(M)$. The deformation space of real projective structures on M is denoted by $\mathbb{RP}^2(M)$.

The deformation space $\mathfrak{D}(M)$ is closely related to $\operatorname{Hom}(\pi,G)/G$ the orbit space of homomorphisms $\phi:\pi\to G$. Let M be a compact connected smooth manifold. Since M is compact, the fundamental group π of M admits finite generators γ_1,\cdots,γ_m with finite relations R_1,\cdots,R_k . For example if M is $\Sigma(g,n)$, that is a compact connected smooth surface with g-genus and n-boundary components, then π admits 2g+n generators $A_1,B_1,\ldots,A_g,B_g,C_1,\ldots,C_n$ with a single relation

$$R = C_n \cdots C_1 B_q^{-1} A_q^{-1} B_q A_q \cdots B_1^{-1} A_1^{-1} B_1 A_1 = I.$$

From the correspondence of the homomorphism $\phi: \pi \to G$ to the image of generators $g_1 = \phi(\gamma_1), \dots, g_m = \phi(\gamma_m)$, $\operatorname{Hom}(\pi, G)$ may be identified with the collection of all m-tuples $(g_1, \dots, g_m) \subset G^m$ satisfying

$$R_1(g_1, \ldots, g_m) = I, \cdots, R_k(g_1, \ldots, g_m) = I.$$

The group G acts on $\text{Hom}(\pi, G)$ by conjugation; that is, for $g \in G$ and $\phi \in \text{Hom}(\pi, G)$, the action $g \cdot \phi$ is defined by

$$(g \cdot \phi)(\gamma) = g \circ \phi(\gamma) \circ g^{-1}$$

where $\gamma \in \pi$. Taking the holonomy homomorphism of a (G, X)-structure defines a map

$$\mathbf{hol}: \mathfrak{D}(M) \longrightarrow \mathrm{Hom}(\pi, G)/G$$

which is a local diffeomorphism. See Goldman [3] and Johnson [5] for details.

Let M be a hyperbolic surface. Then the developing map $\operatorname{\mathbf{dev}}$ is a diffeomorphism from \tilde{M} onto a convex domain $\Omega = \operatorname{\mathbf{dev}}(\tilde{M}) \subset \mathbb{H}^2$ and the holonomy homomorphism h is an isomorphism from π onto a discrete subgroup $\Gamma = h(\pi) \subset \operatorname{\mathbf{PSL}}(2,\mathbb{R})$ which acts properly and freely on Ω . Thus if a compact connected smooth surface M has a hyperbolic structure, the M is diffeomorphic to the quotient Ω/Γ . Therefore the element of the Teichmüller space $\mathfrak{T}(M)$ will be identified with a conjugacy class of $\operatorname{Hom}(\pi,\operatorname{\mathbf{PSL}}(2,\mathbb{R}))$.

If M has a real projective structure, then generally the developing map is just a local diffeomorphism and the developing image may be not convex. A domain $\Omega \subset \mathbb{RP}^2$ is called *convex* if there exist a projective line $\ell \subset \mathbb{RP}^2$ such that $\Omega \subset (\mathbb{RP}^2 - \ell)$ and Ω is a convex subset of the affine plane $\mathbb{RP}^2 - \ell$; that is, if $x, y \in \Omega$, then the line segment

 \overline{xy} lies in Ω . By definition, \mathbb{RP}^2 itself is not convex. A real projective structure on M is called *convex* if the developing map $\mathbf{dev}: \tilde{M} \to \mathbb{RP}^2$ is a diffeomorphism onto a convex domain in \mathbb{RP}^2 . The following fundamental theorem is from Goldman's paper [4].

Theorem 2.4. Let M be a real projective surface. Then the following statements are equivalent.

- 1. M has a convex real projective structure.
- 2. M is projectively diffeomorphic to a quotient Ω/Γ where $\Omega \subset \mathbb{RP}^2$ is a convex domain and $\Gamma \subset \mathbf{PGL}(3,\mathbb{R})$ is a discrete group acting properly and freely on Ω .

DEFINITION 2.5. The Goldman space $\mathcal{G}(M)$ is the subset of $\mathbb{RP}^2(M)$ consisting of the equivalence classes of convex real projective structures.

The Goldman space $\mathcal{G}(M)$ is an analogue of the Teichmüller space $\mathfrak{T}(M)$. The Goldman space $\mathcal{G}(M)$ is a component of $\mathbb{RP}^2(M)$ and the restriction of $\mathbf{hol}: \mathbb{RP}^2(M) \to \mathrm{Hom}(\pi, \mathbf{PGL}(3, \mathbb{R}))/\mathbf{PGL}(3, \mathbb{R})$ to $\mathcal{G}(M)$ is an embedding onto an open subset. (Choi and Goldman [2]) It is known that $\mathfrak{T}(M)$ embeds into $\mathcal{G}(M)$. That means every hyperbolic structure on M defines a convex real projective structure on M. Similarly as the Teichmüller space $\mathfrak{T}(M)$, the element of the Goldman space $\mathcal{G}(M)$ will be identified with a conjugacy class of $\mathrm{Hom}(\pi,\mathbf{PGL}(3,\mathbb{R}))$.

3. Matrix presentations of a pair of pants

An element A of $\mathbf{SL}(2,\mathbb{R})$ is said to be *hyperbolic* if A has two distinct real eigenvalues. Since the characteristic polynomial of A is $f(\lambda) = \lambda^2 - t\lambda + 1$ where $t = \operatorname{tr}(A)$, A is hyperbolic if and only if $\operatorname{tr}(A)^2 > 4$. Thus a hyperbolic element A in $\mathbf{SL}(2,\mathbb{R})$ can be expressed by the diagonal matrix

$$\begin{pmatrix}
\alpha & 0 \\
0 & \alpha^{-1}
\end{pmatrix}$$

via an $\mathbf{SL}(2,\mathbb{R})$ -conjugation where $\alpha^2 > 1$.

Let A be an element of $\mathbf{PSL}(2,\mathbb{R})$. Since the absolute value of trace is still defined, $A \in \mathbf{PSL}(2,\mathbb{R})$ is said to be hyperbolic if |tr(A)| > 2. It is known that A is hyperbolic if and only if A has two distinct fixed points on $\partial \mathbb{H}^2$. The following theorem is due to Kuiper [7].

THEOREM 3.1. Let M be a compact connected oriented hyperbolic surface. Then every nontrivial element of holonomy group $\Gamma \subset \mathbf{PSL}(2,\mathbb{R})$ is hyperbolic.

Let $M = \Sigma(g, n)$ be a compact connected oriented surface with g-genus and n-boundary components. If $\chi(M) = 2 - 2g - n < 0$, then there exist 3g - 3 + n nontrivial homotopically-distinct disjoint simply-closed curves on M such that they decompose M as the disjoint union of 2g - 2 + n pairs of pants $\Sigma(0,3)$. Thus a pair of pants $\Sigma(0,3)$ is a building block of an oriented surface M. For more detail, see Wolpert's paper [9].

The goal of this section is to find an expression of the elements of the Teichmüller space $\mathfrak{T}(\Sigma(0,3))$ of a pair of pants. Since $\mathfrak{T}(\Sigma(0,3))$ embeds into $\text{Hom}(\pi,\mathbf{PSL}(2,\mathbb{R}))/\mathbf{PSL}(2,\mathbb{R})$, we should calculate the matrix presentations of the conjugacy classes of $\text{Hom}(\pi,\mathbf{PSL}(2,\mathbb{R}))$.

First we consider the positions of fixed points of hyperbolic elements in $\mathbf{SL}(2,\mathbb{R})$.

LEMMA 3.2. Suppose $A, B \in \mathbf{SL}(2, \mathbb{R})$ and $P \in \mathbf{GL}(2, \mathbb{R})$ satisfying $B = PAP^{-1}$. If $z \in \mathbb{H}^2$ is a fixed point of A, then $w = Pz \in \mathbb{H}^2$ is a fixed point of B.

Proof. Since we have
$$Bw = (PAP^{-1})(Pz) = P(Az) = Pz = w$$
, $w = Pz$ is a fixed point of B .

The principal line of a hyperbolic element $A \in \mathbf{SL}(2,\mathbb{R})$ or $\mathbf{PSL}(2,\mathbb{R})$ is the A-invariant unique geodesic in \mathbb{H}^2 . And it is the line joining two fixed points of A. Since the principal line has a distinct direction, one of the fixed points of A is called the repelling fixed point and the other is called the attracting fixed point. For more easy understanding, see Figure 1, or Beardon's book [1].

PROPOSITION 3.3. Suppose $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, and $B = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}$ are hyperbolic elements of $\mathbf{SL}(2,\mathbb{R})$. Then we have the following relations.

- 1. Det(A) = Det(B)
- 2. $\operatorname{Tr}(A) = \operatorname{Tr}(B)$
- 3. If z is a fixed point of A, then -z is a fixed point of B.

Proof. Let
$$P = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
. Then we can calculate

$$PAP^{-1} = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) = \left(\begin{array}{cc} a & -b \\ -c & d \end{array}\right) = B\,.$$

Therefore the point $w = Pz = \frac{1 \cdot z + 0}{0 \cdot z - 1} = -z$ is a fixed point of B.

FIGURE 1. The fixed points of the matrices A and B

Thus the principal lines of A and B are symmetric with respect to the imaginary axis.

Let $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbf{SL}(2,\mathbb{R})$ be a hyperbolic element. We now consider the location of the principal line of A and the relations of entries of A.

THEOREM 3.4. Suppose that A is a hyperbolic element of $\mathbf{SL}(2,\mathbb{R})$ and z_r, z_a are the repelling and attracting fixed points of A. Then

- 1. $0 < z_a, z_r < \infty$ if and only if (a d) c > 0, b c < 0.
- 2. $z_a < z_r$ if and only if (a+d)c < 0.

Figure 2. The principal line with $0 < z_a < z_r < \infty$

Proof. Since z_a, z_r are the fixed points of the hyperbolic transformation $A(z) = \frac{az+b}{cz+d}$, they are the roots of the equation

(3.2)
$$cz^2 + (d-a)z - b = 0.$$

Suppose $0 < z_a, z_r < \infty$. First we claim that $c \neq 0$. If c = 0, then $1 = \det(A) = ad$. Thus $d = a^{-1}$ and $A(z) = a^2z + ab$. This yields that

 ∞ is a fixed point of A(z) since $a \neq 0$. It contradicts the assumption. Since $z_a + z_r = \frac{a-d}{c}$ and $z_a \cdot z_r = \frac{-b}{c}$, it proves $0 < z_a$, $z_r < \infty$ if and only if (a-d)c > 0 and bc < 0.

Since we have $c \neq 0$, the roots z_a, z_r of the Equation (3.2) can be expressed by

(3.3)
$$z_a, z_r = \frac{(a-d) \pm \sqrt{(a+d)^2 - 4}}{2c}.$$

Suppose that the attracting fixed point z_a is smaller than the repelling fixed point z_r ; i.e. $z_a < z_r$. Let w be the mid point of the fixed points z_a and z_r ; i.e. $w = (z_a + z_r)/2 = (a - d)/(2c)$. Then the condition $z_a < z_r$ is equivalent to A(w) < w. Since we can compute

$$A(w) - w = \frac{a(\frac{a-d}{2c}) + b}{c(\frac{a-d}{2c}) + d} - \left(\frac{a-d}{2c}\right)$$
$$= \frac{a(a-d) + 2bc}{c(a+d)} - \left(\frac{a-d}{2c}\right) = \frac{(a+d)^2 - 4}{2(a+d)c},$$

and $(a+d)^2 > 4$, it proves $z_a < z_r$ if and only (a+d)c < 0. This completes the proof.

COROLLARY 3.5. Let $A \in \mathbf{SL}(2,\mathbb{R})$ representing a hyperbolic transformation of \mathbb{H}^2 and z_r, z_a the repelling and attracting fixed points of A. Suppose $0 < z_a < z_r < \infty$, then $a^2 < d^2$ and b d > 0.

Proof. From the Theorem 3.4, we have the relations (a-d) c > 0 and (a+d) c < 0. Thus $(a-d)(a+d)c^2 = (a^2-d^2)c^2 < 0$ implies $a^2 < d^2$. Since $z_a < z_r$, the image of the origin under A should be positive as in the Figure 2. That means A(0) = b/d > 0. Thus we have b d > 0. This also implies $b \neq 0$ and $d \neq 0$.

COROLLARY 3.6. Let $A \in \mathbf{SL}(2,\mathbb{R})$ representing a hyperbolic transformation of \mathbb{H}^2 .

- 1. Suppose that b>0. Then $0< z_a< z_r<\infty$ if and only if $c<0,\ d>0,\ |a|< d.$
- 2. Suppose that b < 0. Then $0 < z_a < z_r < \infty$ if and only if c > 0, d < 0, |a| < (-d).

Proof. Suppose $0 < z_a < z_r < \infty$ and b > 0. Since we have the relations b c < 0, b d > 0 and $a^2 < d^2$, the condition b > 0 yields that c < 0, d > 0, and |a| < |d| = d. Conversely the condition |a| < d derives (a-d) < 0, and (a+d) > 0. Since c < 0 we get (a-d)c > 0 and (a+d)c < 0. Since b c < 0, this induces $0 < z_a < z_r < \infty$. We can prove similarly for the case b < 0.

4. Teichmüller space of a pair of pants $\Sigma(0,3)$

Recall that a pair of pants $M = \Sigma(0,3)$ is a sphere with three holes. Suppose M is equipped with a hyperbolic structure. Since the holonomy homomorphism is isomorphic to its image, the fundamental group π of M will be identified with

$$\pi = \langle A, B, C \in \mathbf{PSL}(2, \mathbb{R}) \mid R = CBA = I \rangle.$$

FIGURE 3. A pair of pants $M = \Sigma(0,3)$

Let $A, B, C \in \mathbf{PSL}(2, \mathbb{R})$ represent the boundary components of M. We will find the expression of the generators A, B and C of π in terms of $\mathbf{SL}(2, \mathbb{R})$ instead of $\mathbf{PSL}(2, \mathbb{R})$ because $\mathbf{SL}(2, \mathbb{R})$ is easier to compute and understand than $\mathbf{PSL}(2, \mathbb{R})$. Since the matrices $A, B, C \in \mathbf{SL}(2, \mathbb{R})$ are hyperbolic and represented up to conjugate, without loss of generality, we can assume

$$B = \left(\begin{array}{cc} \mu & 0 \\ 0 & \mu^{-1} \end{array} \right)$$

with $\mu^2 > 1$. Then B(0) = 0 since

$$B(z) = \frac{\mu \cdot z + 0}{0 \cdot z + \mu^{-1}} = \mu^2 z.$$

Thus 0 is the repelling fixed point and ∞ is the attracting fixed point of B since $\mu^2 > 1$. By the discreteness of holonomy group, $A(0) \neq 0$. Suppose

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

then $b \neq 0$. If b = 0, then

$$A(0) = \frac{a \cdot 0 + b}{c \cdot 0 + d} = 0,$$

contradicting for $A(0) \neq 0$. Suppose $\operatorname{tr}(A) = \lambda + \lambda^{-1}$ where $\lambda^2 > 1$. Since $a + d = \operatorname{tr}(A) = \lambda + \lambda^{-1}$, we have $d = -a + \lambda + \lambda^{-1}$. Since $\det(A) = ad - bc = 1$, we obtain

$$bc = ad - 1 = a(-a + \lambda + \lambda^{-1}) - 1 = -(a - \lambda)(a - \lambda^{-1}).$$

Thus we have $c = -(a - \lambda)(a - \lambda^{-1})b^{-1}$ since $b \neq 0$. Therefore

$$A = \begin{pmatrix} a & b \\ -(a-\lambda)(a-\lambda^{-1})b^{-1} & -a+\lambda+\lambda^{-1} \end{pmatrix}.$$

Suppose b > 0. Let

$$P = \left(\begin{array}{cc} \sqrt{b^{-1}} & 0\\ 0 & \sqrt{b} \end{array} \right),$$

then

$$\begin{split} PAP^{-1} &= \left(\begin{array}{cc} a & 1 \\ -(a-\lambda)(a-\lambda^{-1}) & -a+\lambda+\lambda^{-1} \end{array} \right), \\ PBP^{-1} &= \left(\begin{array}{cc} \mu & 0 \\ 0 & \mu^{-1} \end{array} \right) = B. \end{split}$$

Similary if b < 0, then there exist

$$Q = \left(\begin{array}{cc} \sqrt{-b^{-1}} & 0\\ 0 & \sqrt{-b} \end{array}\right)$$

such that

$$QAQ^{-1} = \begin{pmatrix} a & -1 \\ (a-\lambda)(a-\lambda^{-1}) & -a+\lambda+\lambda^{-1} \end{pmatrix},$$
$$QBQ^{-1} = \begin{pmatrix} \mu & 0 \\ 0 & \mu^{-1} \end{pmatrix} = B.$$

Since R = CBA = I, we can get $C = A^{-1}B^{-1}$. Therefore the generators A, B and C of π are expressed by (4.1)

$$\stackrel{'}{A}=\left(\begin{array}{cc} a & 1 \\ -(a-\lambda)(a-\lambda^{-1}) & -a+\lambda+\lambda^{-1} \end{array} \right), \quad B=\left(\begin{array}{cc} \mu & 0 \\ 0 & \mu^{-1} \end{array} \right),$$

and

(4.2)
$$C = \begin{pmatrix} \mu^{-1}(-a + \lambda + \lambda^{-1}) & -\mu \\ \mu^{-1}(a - \lambda)(a - \lambda^{-1}) & a\mu \end{pmatrix}$$

or

$$(4.3) \ A = \left(\begin{array}{cc} a & -1 \\ (a-\lambda)(a-\lambda^{-1}) & -a+\lambda+\lambda^{-1} \end{array} \right), \ B = \left(\begin{array}{cc} \mu & 0 \\ 0 & \mu^{-1} \end{array} \right),$$

and

(4.4)
$$C = \begin{pmatrix} \mu^{-1}(-a + \lambda + \lambda^{-1}) & \mu \\ -\mu^{-1}(a - \lambda)(a - \lambda^{-1}) & a\mu \end{pmatrix}.$$

As a result, the trace of C is the same for the both cases; that is

$$tr(C) = \mu^{-1}(-a + \lambda + \lambda^{-1}) + a\mu.$$

Suppose $tr(C) = \nu + \nu^{-1}$ with $\nu^2 > 1$. After some simple computations we have

(4.5)
$$a = \frac{\mu}{\mu^2 - 1} \left((\nu + \frac{1}{\nu}) - \frac{1}{\mu} (\lambda + \frac{1}{\lambda}) \right).$$

Therefore $\{\lambda, \mu, \nu\}$ is a coordinate for the Teichmüller space $\mathfrak{T}(\Sigma(0,3))$, i.e., the dimension of the Teichmüller space $\mathfrak{T}(\Sigma(0,3))$ is 3.

COROLLARY 4.1. Suppose z_r, z_a are the repelling and attracting fixed points of the hyperbolic matrix

$$A = \begin{pmatrix} a & 1 \\ -(a-\lambda)(a-\lambda^{-1}) & -a+\lambda+\lambda^{-1} \end{pmatrix}$$

with $\lambda^2 > 1$. Then $0 < z_a < z_r$ if and only if $a < \lambda^{-1} < 1 < \lambda$.

Proof. By Corollary 3.6, we have the relations $(a - \lambda)(a - \lambda^{-1}) > 0$ and $a \le |a| < -a + \lambda + \lambda^{-1}$. Suppose $(a - \lambda) > 0$ and $(a - \lambda^{-1}) > 0$. Then $2a > \lambda + \lambda^{-1}$. It contradicts the result $a < -a + \lambda + \lambda^{-1}$. Thus the inequalities should be $(a - \lambda) < 0$ and $(a - \lambda^{-1}) < 0$. Also we have $-a \le |a| < -a + \lambda + \lambda^{-1}$. Thus we obtain $0 < \lambda + \lambda^{-1}$. The assumption $\lambda^2 > 1$ yields that $a < \lambda^{-1} < 1 < \lambda$. Conversely if $a < \lambda^{-1} < 1 < \lambda$, then we can easily show that $A_{21} < 0$, $A_{22} > 0$ and $|A_{11}| < A_{22}$ where A_{ij} is the (i, j)-th entry of the matrix A.

REMARK 4.2. Thus above matrix A has positive valued trace $\lambda + \lambda^{-1}$.

COROLLARY 4.3. Suppose z_r, z_a are the repelling and attracting fixed points of the hyperbolic matrix

$$A = \begin{pmatrix} a & -1 \\ (a-\lambda)(a-\lambda^{-1}) & -a+\lambda+\lambda^{-1} \end{pmatrix}$$

with $\lambda^2 > 1$. Then $0 < z_a < z_r$ if and only if $\lambda < -1 < \lambda^{-1} < a$.

Proof. It can be proved in the same way in Corollary 4.1. \Box

Since A, B, C are hyperbolic elements and the holonomy group is discrete, the locations of the principal lines of A, B, C should be one of the following figures. (Keen [6])

FIGURE 4. The locations of the principal lines of A, B, C

The relation of matrices between two diagrams is

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \iff A = \left(\begin{array}{cc} a & -b \\ -c & d \end{array} \right).$$

Thus without loss of generality, we may assume that $0 < z_a < z_r$.

THEOREM 4.4. Suppose z_r, w_r, z_a, w_a are the repelling and attracting fixed points of the hyperbolic matrices A in (4.1) and C in (4.2) with $\mu^2 > 1$ respectively. Suppose we have $0 < z_a < z_r$ and $0 < w_a < w_r$, then $a < 0, \lambda > 1$ and $\lambda + \lambda^{-1} < (-a)(\mu^2 - 1)$.

Proof. Let C_{ij} stand for the (i,j)-th entry of the matrix C. Since $0 < w_a < w_r$, we get $C_{12}C_{22} = (-\mu)(a\mu) > 0$. Thus we get a < 0. $C_{12}C_{21} < 0$ implies $(a - \lambda)(a - \lambda^{-1}) > 0$. And the condition $(C_{11} + C_{22})C_{21} = \left[\mu^{-1}(-a + \lambda + \lambda^{-1}) + a\mu\right]\mu^{-1}(a - \lambda)(a - \lambda^{-1}) < 0$ implies $(-a + \lambda + \lambda^{-1}) < -a\mu^2$. Thus we have $(\lambda + \lambda^{-1}) < (-a)(\mu^2 - 1)$. $(C_{11} - C_{22})C_{21} = \left[\mu^{-1}(-a + \lambda + \lambda^{-1}) - a\mu\right]\mu^{-1}(a - \lambda)(a - \lambda^{-1}) > 0$ implies $(\lambda + \lambda^{-1}) > a(\mu^2 + 1)$. Since $\lambda > 1$ and a < 0, above condition trivially holds. Therefore the conditions for $0 < z_a < z_r$ and $0 < w_a < w_r$ are a < 0, $\lambda > 1$ and $\lambda + \lambda^{-1} < (-a)(\mu^2 - 1)$.

Since the matrix C is representing a boundary component a pair of pants, C is hyperbolic. Thus

$$\operatorname{tr}(C)^2 = (\mu^{-1}(-a + \lambda + \lambda^{-1}) + a\mu)^2 > 4.$$

Multiply both sides by $\mu^2 > 1$ induces $((-a + \lambda + \lambda^{-1}) + a\mu^2)^2 = ((\lambda + \lambda^{-1}) + a(\mu^2 - 1))^2 > 4\mu^2$. Since $(\lambda + \lambda^{-1}) + a(\mu^2 - 1) < 0$, we have $-(\lambda + \lambda^{-1}) - a(\mu^2 - 1) > 2|\mu|$. Therefore the hyperbolic condition for the matrix C in (4.2) is

$$(4.6) (-a)(\mu^2 - 1) > (\lambda + \lambda^{-1}) + 2|\mu|,$$

where a < 0, $\lambda > 1$, and $\mu^2 > 1$.

Now we consider the position of fixed points of the matrix A and C.

THEOREM 4.5. Suppose that A is the hyperbolic matrix in (4.1) with $0 < z_a < z_r$. Then the fixed points of A are

(4.7)
$$z_a = \frac{1}{\lambda - a} \text{ and } z_r = \frac{1}{\lambda^{-1} - a}.$$

Proof. By the Equation (3.3),

$$z_{a}, z_{r} = \frac{(2a - \lambda - \lambda^{-1}) \pm \sqrt{(\lambda + \lambda^{-1})^{2} - 4}}{-2(a - \lambda)(a - \lambda^{-1})}$$

$$= \frac{(2a - \lambda - \lambda^{-1}) \pm |\lambda - \lambda^{-1}|}{-2(a - \lambda)(a - \lambda^{-1})}$$

$$= \frac{(2a - \lambda - \lambda^{-1}) \pm (\lambda - \lambda^{-1})}{-2(a - \lambda)(a - \lambda^{-1})}$$

$$= \frac{2(a - \lambda^{-1})}{-2(a - \lambda)(a - \lambda^{-1})} \text{ or } \frac{2(a - \lambda)}{-2(a - \lambda)(a - \lambda^{-1})}$$

$$= \frac{1}{(\lambda - a)} \text{ or } \frac{1}{(\lambda^{-1} - a)}.$$

Since $(\lambda - a) > (\lambda^{-1} - a)$, the attracting fixed point z_a of A is $1/(\lambda - a)$ and the repelling fixed point z_r of A is $1/(\lambda^{-1} - a)$.

THEOREM 4.6. Suppose that C is the hyperbolic matrix in (4.2) with $0 < w_a < w_r$. Then the fixed points of C are

$$w_a = \frac{E - \sqrt{D}}{2(\lambda - a)(\lambda^{-1} - a)}$$
 and $w_r = \frac{E + \sqrt{D}}{2(\lambda - a)(\lambda^{-1} - a)}$,

where $E=-a(\mu^2+1)+\lambda+\lambda^{-1}$ and $D=\left(a(\mu^2-1)+\lambda+\lambda^{-1})\right)^2-4\mu^2$.

 \Box

Proof. By the Equation (3.3), the fixed points w_a , w_r of C is

$$\frac{[\mu^{-1}(-a+\lambda+\lambda^{-1})-a\mu]\pm\sqrt{[\mu^{-1}(-a+\lambda+\lambda^{-1})+a\mu]^2-4}}{2\mu^{-1}(a-\lambda)(a-\lambda^{-1})}$$

$$=\frac{[(-a+\lambda+\lambda^{-1})-a\mu^2]\pm\sqrt{[(-a+\lambda+\lambda^{-1})+a\mu^2]^2-4\mu^2}}{2(a-\lambda)(a-\lambda^{-1})}$$

$$=\frac{[-a(\mu^2+1)+\lambda+\lambda^{-1}]\pm\sqrt{[a(\mu^2-1)+\lambda+\lambda^{-1})]^2-4\mu^2}}{2(\lambda-a)(\lambda^{-1}-a)}.$$

The fact $(\lambda - a)(\lambda^{-1} - a) > 0$ proves the theorem.

THEOREM 4.7. Suppose the matrices A, B, C in (4.1) and (4.2) have the relation $a < 0, \lambda > 1, \mu^2 > 1$ and $(-a)(\mu^2 - 1) > (\lambda + \lambda^{-1}) + 2|\mu|$. Then $\{A, B, C\}$ forms generators of the fundamental group π of a pair of pants $\Sigma(0,3)$.

Proof. We should show that $0 < z_a < z_r < w_a < w_r$. By Theorem 4.4, it is enough to show that $z_r < w_a$. Theorems 4.5 and 4.6 and the facts $(\lambda - a) > 0$ and $(\lambda^{-1} - a) > 0$ yield that $z_r < w_a$ if and only if $2(\lambda - a) < E - \sqrt{D}$; that is

$$\sqrt{D} < E - 2(\lambda - a) = (-a)(\mu^2 - 1) - \lambda + \lambda^{-1}$$
.

Since $(-a)(\mu^2-1)-\lambda+\lambda^{-1}>(-a)(\mu^2-1)-\lambda-\lambda^{-1}>0$, it is equivalent to show that

$$D = \left((-a)(\mu^2 - 1) - \lambda - \lambda^{-1} \right)^2 - 4\mu^2 < \left((-a)(\mu^2 - 1) - \lambda + \lambda^{-1} \right)^2.$$

After some calculations we can get $((-a)(\mu^2 - 1) - \lambda) > -\mu^2 \lambda$. This is equivalent to $a(\mu^2 - 1) < \lambda(\mu^2 - 1)$. Since a < 0, $\lambda > 1$ and $\mu^2 > 1$, it proves the theorem.

THEOREM 4.8. Suppose the matrices A, B, C in (4.3) and (4.4) have the relation $a>0, \ \lambda<-1, \ \mu^2>1$ and $a(\mu^2-1)>-(\lambda+\lambda^{-1})+2|\mu|$. Then $\{A,B,C\}$ forms generators of the fundamental group π of a pair of pants.

Proof. This can be proved by the same way in the Theorem 4.7. \Box

Finally we consider the relations of traces of A, B, and C in $\mathbf{SL}(2, \mathbb{R})$.

THEOREM 4.9. Suppose the matrices $\{A, B, C\}$ in (4.1) and (4.2) forms generators of the fundamental group π of a pair of pants. Then

- 1. μ is positive if and only if $\nu < -1$.
- 2. μ is negative if and only if $\nu > 1$.

Proof. Recall the Equation (4.5) that is the relation among the traces of the matrices A, B, C and the value a. If we plug in the Equation (4.5) to the inequality (4.6) representing the hyperbolic condition of the matrix C, then we obtain $(\lambda + \lambda^{-1}) + 2|\mu| < -\mu(\nu + \nu^{-1}) + (\lambda + \lambda^{-1})$. Hence we get the inequality

$$(4.8) 2|\mu| < -\mu(\nu + \nu^{-1}).$$

If μ is positive, then above inequality (4.8) becomes $2\mu < -\mu(\nu + \nu^{-1})$. Since $-\mu$ is negative, we have $-2 > \nu + \nu^{-1}$. Therefore $\nu < -1$. Similarly if μ is negative, then we have $-2\mu < -\mu(\nu + \nu^{-1})$. Since $-\mu$ is positive, we get $2 < \nu + \nu^{-1}$. Therefore $\nu > 1$.

REMARK 4.10. Since A, B, C should satisfy the condition (4.6),

$$\mu > \frac{1+\sqrt{1-a(\lambda+\lambda^{-1})+a^2}}{-a} > 1 \quad \text{if μ is positive,}$$

$$\mu < \frac{1+\sqrt{1-a(\lambda+\lambda^{-1})+a^2}}{a} < -1 \quad \text{if μ is negative.}$$

THEOREM 4.11. Suppose the matrices $\{A, B, C\}$ in (4.3) and (4.4) forms a generator of the fundamental group π of a pair of pants. Then

- 1. μ is positive if and only if $\nu > 1$.
- 2. μ is negative if and only if $\nu < -1$.

Proof. This can be proved by the same way in the Theorem 4.9.

Since tr(A) > 2 in (4.1) and tr(A) < -2 in (4.3), we conclude the following result.

COROLLARY 4.12. Suppose the matrices $\{A, B, C\}$ are in (4.1) and (4.2) or in (4.3) and (4.4) which forms generators of the fundamental group π of a pair of pants. Then $\operatorname{tr}(A) \cdot \operatorname{tr}(B) \cdot \operatorname{tr}(C) < -8$.

Therefore we cannot have the matrices $A, B, C \in \mathbf{SL}(2, \mathbb{R})$ which are representing the boundary components of a pair of pants with all three positive traces. An odd number of traces must be negative.

ACKNOWLEDGEMENTS. I want to thank W. Goldman for introducing me to this subject.

References

[1] A. Beardon, *The Geometry of Discrete Groups*, Graduate Texts in Mathematics, 91, Springer-Verlag, 1983.

- [2] S. Choi; W. M. Goldman, Convex real projective structures on closed surfaces are closed, Proc. Amer. Math. Soc. 118 (1993), no. 2, 657-661.
- [3] W. M. Goldman, Geometric structures on manifolds and varieties of representations, Geometry of group representations (Boulder, CO, 1987), 169–198, Contemp. Math., 74.
- [4] ______, Convex real projective structures on compact surfaces, J. Differential Geom. 31 (1990), no. 3, 791–845.
- [5] D. Johnson and J. J. Millson, Deformation spaces associated to compact hyperbolic manifolds, Discrete groups in geometry and analysis (New Haven, Conn., 1984), 48–106, Progr. Math., 67.
- [6] L. Keen, Canonical polygons for finitely generated Fuchsian groups, Acta Math. 115, 1965, 1–16.
- [7] N. Kuiper, On convex locally projective spaces, Convegno Internazionale di Geometria Differenziale, Italia, 1953, 200-213.
- [8] W. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, 35. Princeton University Press, 1997.
- [9] S. Wolpert, On the Weil-Petersson geometry of the moduli space of curves, Amer. J. of Math. 107 (1985), no. 4, 969-997.

Department of Mathematics Education Korea University Seoul 136-701, Korea E-mail: hongchan@korea.ac.kr