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DISCRETE-TIME QUEUE WITH
VARIABLE SERVICE CAPACITY

YUTAE LEE

ABSTRACT. This paper considers a discrete-time queueing system
with variable service capacity. Using the supplementary variable
method and the generating function technique, we compute the
joint probability distribution of queue length and remaining service
time at an arbitrary slot boundary, and also compute the distribu-
tion of the queue length at a departure time.

1. Introduction

Recently, interests in the discrete-time queues have increased due
to their numerous applications in the analysis of telecommunications
systems and other related areas [12, 18, 19]. One of the reasons for this
is that discrete-time queues fit the slotted nature of telecommunications
systems better than the continuous-time counterparts, and hence they
give more accurate performance measures of these systems|l, 2, 5, 16,
17, 22).

Bulk-service models are useful to investigate the performance of var-
ious telecommunications systems. Besides applications in telecommuni-
cations systems, bulk-service queues are also used in various other areas
such as manufacturing, production, transportation, and other stochastic
systems [3]. It may happen that the server has a fixed maximum capac-
ity, or else the server may take customers according to variable service
capacity. Such systems may serve as a model for a shuttle or automatic
elevator.

Let us review some related papers. In the existing literature, there
have been a number of contributions with respect to bulk-service queues.
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Most of the investigations which employed bulk-service models have con-
sidered continuous-time queues. The readers are referred to Chaudhry
and Templeton [4], Dshalalow [9] and the references therein for a de-
tailed account of such models. This paper considers a discrete-time
bulk-service queueing system. Recently, Diimmler and Schémig [10]
considered Geo/G*%/1 queueing systems with a = 1,2,---,b, where
a is the threshold value of activating the server and b is the service ca-
pacity. Gupta and Goswami [11] discussed analytic and computational
aspects of Geo/G*%/1/N queue. Chaudhry and Chang [3] considered
a Geo/GYY /1/N queue with variable service capacity. They discussed
the computational aspects of the distributions of the customers in the
queue at various epochs.

This paper considers a discrete-time GeoX /GY /1 queue with vari-
able service capacity. Using an invariant relation, Kim et al. [13] also
studied, but they just obtained the probability generating function of
the stationary queue length at a random point on the continuous-time
domain. In this paper, using the supplementary variable method and
the generating function technique, we derive the joint distribution of
queue length and remaining service time at an arbitrary slot boundary,
and also compute the probability distribution of the queue length at a
departure time. We calculate the mean queue length at an arbitrary slot
boundary and a departure time, and provide their bounds.

2. Model

This paper considers a discrete-time single-server queue in which the
time axis is divided into fixed-length contiguous intervals, referred to
as slots. It is always assumed that service times can be started and
completed only at slot boundaries and that their durations are integral
multiples of slot durations [15]. Customers arrive to the system in accor-
dance with a batch geometric process [6] and are accommodated in the
buffer with infinite waiting-room. Let a; be the number of customers
that arrive during slot k. The numbers of customers entering the system
during the consecutive slots are assumed to be i.i.d. non-negative dis-
crete random variables with an arbitrary probability distribution, and
are characterized by the probability generating function A(z) = E[2%]
with finite mean. The service times s of batches are assumed to con-
stitute a set of i.i.d. positive random variables with a general discrete
distribution, and are characterized by the probability generating func-
tion S(z) with finite mean. It is also assumed that the service times and
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the arrival process are mutually independent. The customers are served
in batches of variable capacity, the maximum service capacity being a
finite integer value C. If ¢, is the service capacity for the nth batch
service, then the server can serve up to ¢, customers at the beginning
of the nth batch service. We define

u; = P{ecn =C —j}

and
C .
Uly) =Y uy.
=0

It is assumed that the service capacities are independent of the service
times and the arrival process.

In this paper, even if there is no one in system to serve and/or the
service capacity is zero, and hence the server can serve no customers, the
server may start the service. It is also assumed that arriving customer
cannot be accepted into the batch already undergoing service even if
the capacity of server is available, but has to wait until the next service
instant.

3. Queue length distribution

In this section, the queue lengths at the end of slots are analyzed.
Before proceeding to the analysis of the queue length, we define some
random variables. Let a random variable n; indicate the number of
customers in the queue at the end of slot k. A supplementary random
variable r; indicates the remaining service time at the end of slot k. Then
{(ng, %),k > 0} constitutes a two dimensional Markov chain embedded
at the end of each slot. If we denote by ax the number of customers
entering the system during slot &, then the system under consideration
evolves as follows:

(a) If 7, = 0, then

N1 = (ng —C+ )" + agy1 with probability u;, j=0,1,---,C,
Tkt1 = 8- 1
(b) If rx > 0, then

Ng+1 = Nk + Gpyl,

Tk+1 = Tk — L.
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Let Py(z,y) = E [x™y"*]. From the above state equations we have

Pyyi(z,y)
=F [CL‘"’“‘HyT’“*l]
= E [ =gz 9" + I{rk>0}3«‘”’°+a’°“y’"’°_l]
A
= (z) [Px(z,y) — Pi(z,0)] Zu 27 =C Py.(z,0)
[Tire—ome<c-3) =2/ °E [I{rk=o,nk<c—j}l‘ ]
_A(x)

[Pe(z,y) — Pe(x,0)]

Y
A (VDA | o) 9]
Y xr x
xz :EC - xz
- # I:Pk(ma ) - Zé )S(y) Pk(iﬂ,O)

W +22 % - ew).

where the function Qk(x) is defined as

Cc-1
Qr(z) = ujij [I{rk=0,nk<c—j}‘rnk]
j=0
Cc-1 C—c-1
= P{ry =0,n; = ¢} Z ujzite.
=0 =0

Now, we will find the ergodic condition of the Markov chain {(ng, r¢)}.
We assume that the Markov chain {(ng, %)} is irreducible, which is not
a strong assumption. Note that this is true if P(a = 1) > 0. Obviously,
S'(1)A’(1) < C —U’(1) is the necessary condition for the Markov chain
{(nk,rk)} to be positive recurrent. Note that the average service capac-
ity is C' — U’(1), while during a service time S’(1)A’(1) customers will
arrive on average. For the sufficient condition, Foster’s criteria (see Lam-
perti [14]) is used. Appendix shows that S'(1)A’(1) < C — U’(1) is also
the sufficient condition for the Markov chain {(ng, %)} to be positive re-
current. Thus, assuming that the Markov chain {(ng, %)} is irreducible,
the Markov chain is ergodic if and only if S’(1)A’(1) < C — U’(1).
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Assume that the Markov chain {(ng,7x)} is ergodic. Then, there
exists unique stationary distribution. Let

P(z,y) = lim Py(z,y)

denote the the stationary joint probability generating function of the
Markov chain {(ng,rx)}. Letting k — oo in (1) we obtain

2) lv — A(x)} P(z,y)

A9 [5w) (2°Q(1) - Q@) ~ {o€ ~ U@)SW)} P, 0)],

where

Q(z) = lim Qk(z).

k—o00

The left-hand side of (2) becomes zero at y = A(z), at which the
right-hand side must also be zero. Thus, if we choose y = A(x) for
|z] <1 in (2), then we determine P(x,0) as

S(A(z)) [z9Q(1) — Q(x)]
z¢ - U(z)S(A(z))

Equation (3) is of indeterminate form, that is, (3) has unknown term
Q(z), but the C unknowns

3) P(z,0) =

lim P{ry =0,np, =¢}, ¢=0,1,---,C—1,
k—o0

can be determined by consideration of the zeros of the denominator in
(3) that lie in the closed unit disk {z : |z} < 1}. With Rouche’s theorem,
it can be shown that the equation ¢ — U(z)S(A(z)) = 0 has exactly C
zeros in the unit closed disc {z : |x| < 1}. A detailed explanation can be
found in Saaty[21]. Since P(z,0) is a continuous function for |z| < 1, the
numerator S(A(z))(z¢Q(1) — Q(z)) of P(z,0) should vanish at each of
the zeros, yielding C' equations. One of the zeros equals 1, and leads to
a trivial equation[8]. However, the relation P(1,0) = 1/5’(1) provides
an additional equation. Using I’Hopital’s rule, this relation is found to
be

(4) C-U'(1) -8 1A (1) =51 [Ce()-Q'1)].
The C roots of ¢ —U(z)S(A(x)) = 0 in the closed unit disk {z : |z| < 1}
are denoted by zg = 1, 21, ---, £o-1. If one of the roots is zero of

S(A(z)), then it should be 0, which can not be true. Thus, the C
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roots are zeros of z€Q(1) — Q(z), not of S(A(x)). Hence, by writing
Q1) — Q(x) in (3) as
Cc-1

(.’L‘ - 1)F H(ZIJ - wc)
c=1

with F' a constant, and using (4) to derive the value of F, it follows that

_C— U'(1) - S'(1)A'(1)
- c-1

s'(1) I1 (1 - =)

c=1

F

_C-U'(1) - S'(1)A(1) -z
(5) xCQ(l) - Q(SL‘) - Sl(l) (SE - 1) H 1— xc’

c=1
so that (3) can be written as

_[c-U'(1) - $'(1)A(1)] S(A(=)) T =2
©) P@0) = —gne_vmsamy @ V1T,

c=1
for |z| < 1.
Therefore, using (5) and (6) in (2), we can determine
[C-U'(1) -S'MAM)] Ax) _S(y) = S(A(z))
5'(1) [y — A(=)] z¢ - U(z)S(A(z))

(7) x(z 1) [] T=—=.

Let N(z) be the probability generating function of the queue length
at an arbitrary slot boundary. Clearly, N(z) is given by

N(z)

P(z,y)

e, )

= P(z,1)
8 [C-U'(1) - S8 (1)A'(1)] A(z) 1 - S(A(z))
®) B S'(1) [1 — A(z)] 2C —U(z)S(A(x))
c-1

r—=x
x(m—l)Hl_x:.
c=1

Let D(z) be the probability generating function of the queue length -
at a departure time. The probability generating function D(z) can be
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expressed by

_ P(z,0)

D) = B0
_[e-U') - S'()A D) S(Az) T -z
S N B | S

The probability generating functions N(z) and D(z) are related by

B 1 A()[1 - S(A())
Ne)=D@) 5wy "S- Aw)]

where the denominator S(A(z)) of the second term represents the prob-
ability generating function of the number of customers that arrive during
a service time, and the third term

A(z) [1 - S(A(2))]
S'(1)[1 — Afz)]

represents the probability generating function of the number of cus-
tomers that arrive during an elapsed service time.

4, Moments

Now we can calculate the mean queue lengths at an arbitrary slot
boundary and a departure time by using the differentiation of the re-
spective probability generating functions N(z) and D(zx) for z = 1. We
obtain

pny = N'(1)
S AOP +S(MA(L) + (WA () - 2[S' (WA Q)]
- 2[C-U'(1) - S'(1)A'(1)]
U”(1)+U’(1)+C[S’( JA' (D) UMW) iy o
20— (1) — S (D] T4
/ " ! c-1
(10) +A(1)[i;}()1;5(1)] —%(0—1)+Z 1_1%

c=1
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and
pp = D'(1)
_ ST AW+ S'(HA"Q) + S(1)AQ) —2[S' () A Q)
- 2[C-U'(1) - S (1)A' (1))
U'(1)+U'(1)+C[S"(1)A (1) - U'(1)]
2[C -U'(1) - S'(1)A'(1)]
1 &
(11) —5((1—1)+C§::1 T

The expressions for the higher-order moments can be derived as well
from the appropriate derivatives of the respective generating functions.

In this section, we are also interested in bounding uy and pp. In [§]
the bound

(C-1)+ %(U’(l) +S'(1)A'(1),C - 1)~

A
N =

has been shown to hold for

o1
; 1—z.’

where (a,b)” denotes the minimum of a and b. Hence,

(12) BN < uny < By + %(U’(l) +S'(1)A'(1),C — 1)~

and

(13) Bp <up < Bp+ %(U’(l) + 8'(1)A'(1),C —1)7,

where

b = SR+ S 1AW +8MAQ) - 2(S' AW
Yoo 2[C-U'(1) - S'(DA()]
U'(1)+U'(1)+ C[S'(1)A(1) - U'(1)]
20~ U'(1) - S (DA(D)]
101\ A7 A'(1)[S"(1) + 5 (1))
=S (l)A (1) + 25’/(1)
and

A [S"(1) + 5'(1)]

BDEBN+S/(1)A/(1)— 25[(1) .
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These bounds provide the approximation of the mean queue length at
an arbitrary slot boundary and a departure time. The approximation
does not require a complex numerical procedure because the bounds
are represented by the first two moments of the distributions for the
arrival-bulk size, the service capacity and the service time.

5. Concluding remarks

This paper considered a discrete-time queue with variable service
capacity. By means of the probability generating functions and the
supplementary variable method, we provided an analysis of the joint
distribution for the queue length and the remaining service time at an
arbitrary slot boundary, and also computed the distribution of the queue
length at a departure time. We calculate the mean queue length at an
arbitrary slot boundary and a departure time, and provide their bounds.

6. Appendix(Sufficient condition for {(ng,rx)} to be posi-
tive recurrent)

We intend to show that $’(1)A’(1) < C — U’(1) is the sufficient con-
dition for the Markov chain {(ng, %)} to be positive recurrent. Now, we
assume that S’(1)A’(1) < C—U’(1). Foster’s criteria is used in order to
show that the Markov chain {(ng,7x)} is positive recurrent. We choose
a real number a such that [S'(1) - 1]/[C -U'(1) - A'(1)] < a < 1/A'(1)
and choose the test function as follows: f(i,7) = @i + j. The the mean
drift of the test function is

zij = E[f(nk+1,7k+1) — F(ne, m)l (0, k) = (4, 7))

C
aA'(1)-1+8(1)—ai+a Y (1—C+k)u,
k=C—1i
= f0<i<C—1,5=0,
aA'(1) =14+ 5(1)—a[C-U'(1)], ifi>C,5=0,
ad'(1) -1, if § >=1.

Then, z;; < oo for all ¢ and 7, and
zij <min (@A'(1) -1+ §'(1) — a[C - U'(1)],cA'(1) - 1) <0
for i > C and/or j > 1. Let
e = min (e4'(1) — 14+ 8'(1) — o[C - U'(1)], a4/ (1) — 1) /2.
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Then, z;; < —e for ¢ > C and/or j > 1. Hence, except finite subset
{(4,7)|0 < i < C — 1,5 = 0} of the state space of {(ng, %)}, we have
zi; < —e. Therefore, by Foster’s criteria, we see that the Markov chain
is positive recurrent.
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