Mechanism of Stress-dependent Structural Change of Yeast Prx

Yeast Prx의 스트레스의존 구조적 변화의 기작

  • Kang, Ji-Seoun (Devision of Electron Microscopy, Korea Basic Science Institute) ;
  • Cheong, Gang-Won (Division of Applied Life Science, Gyeongsang National University, Environmental Biotechnology National Core Research Center)
  • 강지선 (한국기초과학지원연구원 전자현미경부) ;
  • 정강원 (경상대학교 응용생명과학부, 국가핵심연구센터)
  • Published : 2005.12.01

Abstract

Peroxiredoxins (Prxs) are a superfamily of thiol-specific antioxidant proteins present in all organism and involved in the hydroperoxide detoxification of the cell. To determine the structural organization of yeast-Prx, electron microscopic analysis was performed. The average images of yeast-Prxs revealed three different structure, i.e. spherical-shaped structure, ring-shaped structure and irregularly-shaped small particles. In order to analyze the conformational change of yeast-Prx by reduction and oxidation, Prxs were subjected to DTT and $H_2O_2$. In presence of DTT, yeast-Prx showed a high tendency to form a decamer. However, they changed into dimeric or spherical structure in the oxidized state. Here we also show ionic interaction between dimeric subunits is primarily responsible for yeast-Prx oligomerization.

티올특이성 산화환원 단백질인 peroxiredoxin (thiolspecific peroxiredoxin, Prx) 은 거의 모든 생명체에 존재하며, reactive oxgen species (ROS)을 제거하는 역할을 수행한다. 전자현미경/image processing을 이용하여 세포의 방어기작에 중요한 기능을 수행하는 Prx의 구조를 분석하였다. Yeast-Prx는 크게 세 가지의 다른 형태 즉, 구 형태, ring 형태의 구조와 비 규칙적인 적은 입자로 구성되어 있음을 확인하였다. 또한 산화/환원 상태에서의 구조적 변화를 관찰하기위해 DTT와 $H_2O_2$를 처리 후 전자현미경을 관찰 하였다. 환원상태의(DTT 처리 후) yeast-Prx는 많은 decamer 구조를 보여주는 반면, 산화상태에서는 ($H_2O_2$ 처리 후) dimer나 구 형태의 구조를 보여 주고 있다. 또한 dimeric subunit간의 ionic interaction이 yeast-Prx의 oligomerization에 중요한 인자임을 확인하였다.

Keywords

References

  1. Bryk R: Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407 : 211-215, 2000 https://doi.org/10.1038/35025109
  2. Chae HZ, Chung SJ, Rhee SG: Thiolredoxin-dependent peroxide reductase from yeast. J Biol Chem 269 : 27670-27678, 1994
  3. Chauhan R, Mande SC: Characterization of the Mycobacterium tuberculosis H37Rv alkyl hydroperoxidase AhpC points to the importance of ionic interactions in oligomerization and activity. Biochem J 354 : 209-215, 2001 https://doi.org/10.1042/0264-6021:3540209
  4. Cheong G W, Guckenberg R, Fuchs K H, Gross H, Bameister W: The structure of the surface layer of Methanoplanus limicola obtained by a combined electron microscopy and scanning tunneling microscopy approach. J Struct Biol 111 : 125-134, 1993 https://doi.org/10.1006/jsbi.1993.1043
  5. Cheong NE, Choi YO, Lee KO, Kim WY, Jung BG, Chi YH, Jeong JS, Kim K, Cho MJ, Lee SY: Molecular cloning, expression, and functional characterization of a 2Cysperoxiredoxin in Chinese cabbage. Plant Mol Biol 40 : 825-883, 1999 https://doi.org/10.1023/A:1006271823973
  6. Demple B, Amabile Cuevas C.F: Redox redux; The control of oxidative stress responses. Cell 67 : 837-839, 1991 https://doi.org/10.1016/0092-8674(91)90355-3
  7. Durr R: Displacement field analysis: calculation of distortion measures from displacement maps. Ultrmicroscopy 38 : 135-141, 1991 https://doi.org/10.1016/0304-3991(91)90114-L
  8. Finkel T: Oxidant signals and oxidative stress. Curr. Opion. Cell Biol. 15 : 247-254, 2003 https://doi.org/10.1016/S0955-0674(03)00002-4
  9. Harris JR, Schroder E, Isupov MN, Scheffler D, Kristensen P, Littlechild JA, Vagin AA, Meissner U: Comparison of the decameric structure of peroxiredoxin-II by transmission electron microscopy and X-ray crystallography. Biochim Biophys Acta 1547 : 221-234, 2001 https://doi.org/10.1016/S0167-4838(01)00184-4
  10. Hegerl R: The EM program package; A platform of image processing in biological electron microscopy. J Struct Biol 116 : 30-34, 1996 https://doi.org/10.1006/jsbi.1996.0006
  11. Kang MS, Kim SR, Kwack P, Lim BK, Ahn SW, Rho YM, Seong IS, Park SC, Eom SH, Chung CH, Cheong GW: Molecular architecture of the ATP-dependent CodWX protease having N-terminal serine active site. EMBO J 22 : 2893-2902, 2003 https://doi.org/10.1093/emboj/cdg289
  12. Kim K I, Cheong G W, Park S C, Ha J S, Woo K M, Chio S J, Chung C H: Heptameric Ring Structure of the Heat-shock Protien ClpB, a Protein-activated ATPase in Escherichia coli. J Mol Biol 303: 655-666, 2000 https://doi.org/10.1006/jmbi.2000.4165
  13. Kristensen P, Rasmussen D, Kristensen BI: Properities of thiol-specific anti-oxidant protein or calpromotion in solution. Biophys Res Commun 262 : 127-131, 1999 https://doi.org/10.1006/bbrc.1999.1107
  14. Phipps BM, Hoffmann A, Stetter KO, Baumeister W: A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J 10 : 1711-1722, 1991
  15. Plishker GA, Chevalier D, Seinsoth L, Moore RB: Calciumactivated potassium transport and high molecular weight from of calpromotion. J Biol Chem 267 : 21839-21843, 1992
  16. Poole LB, Ellis HR: Flavin-dependent alkyl hydro-peroxide reductase from Samolla typhimurium. 1. Purification and enzymatic activities of overexpressed AhpC proteins. Biochemistry 35 : 56-64, 1996 https://doi.org/10.1021/bi951887s
  17. Saxton WO, Pitt TJ, Horner M: Digital image processing the SEMPER system. Ultramocroscopy 4 : 133-139, 1979
  18. Schroder E, Ponting CP: Evidence that peroxiredoxins are novel members of the thioredoxin fold superfamily. Protein Sci 7 : 2465-2468, 1998 https://doi.org/10.1002/pro.5560071125
  19. Shau H, Kim A: Identification of natural killer enhancing factor (NKEF) as a major antioxidant in human red blood cells. Biochem Biophys Res Commun 199 : 83-87, 1994 https://doi.org/10.1006/bbrc.1994.1197
  20. Wood ZA, Poole LB, Hantgan RR, Karplus PA: Dimers to doughnuts: redox-sensitive oligomerization of 2-Cys peroxiredoxins. Biochemistry 41 : 5493-5504, 2002 https://doi.org/10.1021/bi012173m
  21. Wood ZA, Poole LB, Hantgan RR, Karplus PA: Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300 : 605-653, 2003