Development of Delaunay Triangulation Algorithm Using Oct-subdivision in Three Dimensions

3차원 8분할 Delaunay 삼각화 알고리즘 개발

  • 박시형 (건국대학교 대학원 기계설계학과) ;
  • 이성수 (건국대학교 기계설계학과)
  • Published : 2005.06.01

Abstract

The Delaunay triangular net is primarily characterized by a balance of the whole by improving divided triangular patches into a regular triangle, which closely resembles an equiangular triangle. A triangular net occurring in certain, point-clustered, data is unique and can always create the same triangular net. Due to such unique characteristics, Delaunay triangulation is used in various fields., such as shape reconstruction, solid modeling and volume rendering. There are many algorithms available for Delaunay triangulation but, efficient sequential algorithms are rare. When these grids involve a set of points whose distribution are not well proportioned, the execution speed becomes slower than in a well-proportioned grid. In order to make up for this weakness, the ids are divided into sub-grids when the sets are integrated inside the grid. A method for finding a mate in an incremental construction algorithm is to first search the area with a higher possibility of forming a regular triangular net, while the existing method is to find a set of points inside the grid that includes the circumscribed sphere, increasing the radius of the circumscribed sphere to a certain extent. Therefore, due to its more efficient searching performance, it takes a shorer time to form a triangular net than general incremental algorithms.

Keywords

References

  1. 박시형, 이성수, '분할 Delaunay 삼각화 알고리즘 개발', CAD/CAM학회, Vol. 7, No.4, pp. 248-253, 2002
  2. Tsung-Pao Fang and Les A. Piegl, 'Delaunay Triangulation Using a Uniform Grid', IEEE Computer Graphics and Applications, Vol. 13, No.3, pp. 36-47, 1993 https://doi.org/10.1109/38.210490
  3. Tsung-Pao Fang and Les A. Piegl, 'Delaunay Triangulation in Three Dimensions', IEEE Computer Graphics and Applications, Vol. 15, No.5, pp. 62-69, 1995
  4. Michael J. Laszlo, 'Computational Geometry and Computer Graphics in C++', Prentice Hall, 1996
  5. Ding-Zhu Du and Frank Hwang, 'Computing in Euclidean Geometry', World Scientifc, 1995
  6. Rex A. Dwyer, 'A Faster Divide and Conquer Algorithm for Constructing Delaunay Triangulations', Algorithmica, Vol. 2, pp. 137-151, 1987 https://doi.org/10.1007/BF01840356
  7. David P. Dobkin and Michael J. Laszlo, 'Primitives for the Manipulation of Three Dimensional Subdivisions', Algorithmica, Vol. 4, pp. 3-32, 1989 https://doi.org/10.1007/BF01553877
  8. P Cignoni, C Montani and R Scopigno, 'DeWall : A Fast Divide and Conquer Delaunay triangulation algorithm in $E^b$', Computer-Aided Design, Vol. 30, No.5, pp. 333-341, 1998 https://doi.org/10.1016/S0010-4485(97)00082-1
  9. Ding-Zhu Du and Frank Hwang, 'Computing In Euclidean Geometry', World Scientific, pp. 225-263, 1998
  10. Bowyer, A., 'Computing Dirichlet Tessellations', The Computer J., Vol. 24, No.2, pp. 162-166, 1981 https://doi.org/10.1093/comjnl/24.2.162
  11. 박형준, '측정데이터로부터 형상 재구성을 위한 곡면 모델링에 관한 연구', 한국과학기술원, 박사학위 논문 1996
  12. 조송래, '개선된 병렬 3차원 딜러니 삼각화 알고리즘', 포항공대, 석사학위 논문, 1997
  13. Lee, S., Park, C. I. and Park, C. M., An Improved Parallel Algorithm for Delaunay Triangulation on Distributed Memory Parallel Computers, In Proceedings of the 1997 Advanced in Parallel and Distributed Computing, Shanghai, China, May, 1997
  14. 김동욱, 김덕수, 조동수, 조영송, Kokichi sugihara., '점 집합의 보로노이 다이어그램을 이용한 원집합의 보로노이 다이어그램의 계산: I. 위상학적 측면', CAD/CAM학회, Vol. 6, No.1, pp. 24-30, 2001
  15. 김동욱, 김덕수, 조동수, 조영송, Kokichi sugihara., '점 집합의 보로노이 다이어그램을 이용한 원집합의 보로노이 다이어그램의 계산 : II. 기하학적 측면', CAD/CAM학회, Vol. 6, No.1, pp. 31-39, 2001