Varietal Analysis and Quantification of Resveratrol in Mulberry Fruits

뽕나무 계통별 오디의 레스베라트롤 함량 분석

  • Kim Hyun-Bok (Department of Agricultural Biology, National Institute of Agriculture Science and Technology, Rural Development Administration) ;
  • Kim Jung-Bong (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Kim Sun-Lim (National Institute of Crop Science, Rural Development Administration)
  • Published : 2005.12.01

Abstract

Resveratrol is naturally occurring phytoalexin compounds produced by grape berries, peanuts, and their products in response to stress such as fungal infection, heavy metal ions or UV irradiation. The objective of this study was to develope a reliable high performance liquid chromatographic (HPLC) method for the quantitative determination of trans-resveratrol in mulberry fruit. Samples were extracted in 80% MeOH and filtered with $0.45{\mu}m$ syringe filter. The transresveratrol was separated Waters $C_{18}$ column, using a mobile phase containing 0.025% trifluroacetic acid in 5% acetonitril and 0.035% trifluroacetic acid in 50% acetonitril, detected by photodiode array detector (PDA) at 254 nm and the flow rate was 1ml/min. Under this analytical condition, the mean content of mulberry fruits (fifty varieties) was $777.3{\pm}585.9ppm$. Among the tested samples, 'Mansaengbaekpinosang (II)' was the highest level in 3450.6 ppm. However four accessions including 'Gukbu', 'Sabangso (I)', 'Simseol' and yield mulberry fruit were not able to detected. Eight suitable varieties selected for the production of fruit were 'Jeolgokchosaeng (Chungbuk)' 777.8 ppm, 'Dangsang 7' 771.1 ppm, 'Jangsosang' 133.9 ppm, 'Susungppong' 31.1 ppm, 'Suwonnosang' 639.7 ppm, 'Palcheongsipyung' 1475.9 ppm, 'Kangsun' 864.0 ppm, and 'Jukcheonchosaeng' 1458.5 ppm. 'Daesungppong' which was the first authorized variety for the production of mulberry fruit was 1236.7 ppm. In conclusion, these results suggest that mulberry including fruit and leaf may a good new resource for resveratrol production.

레스베라트롤(Resveratrol)은 UV 조사, 금속이온 혹은 Botrytis cinerea나 Plasmopara viticola에 의한 감염 등 생물학적, 비생물학적 스트레스에 대해 자신을 방어하기 위하여 만드는 항독성 물질(stilbene phytoalexin)로서 인체내에서 지질대사 제어, 혈소판 응집 억제 및 암 예방 등 다양한 효능을 가지는 것으로 알려져 있는 생리활성물질이다. 본 연구는 우리나라에 유전자원으로 보존 중인 뽕 나무의 결실 오디를 계통별로 채취하여 레스베라트를 함량을 분석함으로써, 레스베라트롤의 새로운 공급원으로서 오디 생산용 뽕 품종의 육종 효율을 높이는 동시에 오디의 기능성 및 이용성을 증대시키고자 하였다. 그 결과를 요약하면 다음과 같다. 1. 공시계통의 평균함량은 $777.3{\pm}585.94ppm$으로 계통간 변이가 매우 심하였다. '만생백피노상 II'는 3450.6 ppm으로 가장 높은 함량을 나타낸 반면, '사방소 I', '심설', '국부' 및 '야상오디'에서는 검출되지 않았다. 2. 과실적 특성인자인 수량, 단과중 및 당도 값을 동시에 만족시켜 오디 생산용 우량 계통으로 선발된 8계통의 레스베라트롤 함량은 각각 '절곡조생(충북)' 777.8 ppm, '팔청시평' 1475.9ppm, '강선' 864.0 ppm, '수원노상' 639.7 ppm, '죽천조생' 1458.5 ppm, '수성뽕' 31.1 ppm, '당상7호' 771.1 ppm, '장소상' 133.p ppm이었다. 3. 우리나라 최초의 오디생산용 뽕품종으로 등록된 '대성뽕' 오디의 레스베라트롤 함량은 1236.7 ppm으로 매우 높았다. 따라서 와인 등의 가공제품 개발시 이 품종의 오디를 선택한다면 기능성 및 이용성에서 유리할 것으로 판단된다. 4. 이상에서 오디는 C3G, 루틴, 지방산, 아미노산 등 여러 가지 생리활성물질 뿐 만 아니라 레스베라트롤 함량도 매우 높음을 알 수 있었다. 그러나 계통간 변이가 심하므로 품종선택시 '만생백피노상', '죽천조생', '팔청시평', '대성뽕' 등 고함유 계통을 선택하여 이용성을 높이도록 해야 할 것이다.

Keywords

References

  1. Adrian, M., Jeandet, P., Bessis, R and Joubert, J. M. (1996) Induction of phytoalexin (resveratrol) synthesis in grapevine leaves treated with aluminum chloride ($AICI_3$). J. Agric. Food Chem. 44: 1979-1981 https://doi.org/10.1021/jf950807o
  2. Arce, L., Tena, M. T., Rios, A and Valcarcel, M. (1998) Determination of trans-resveratrol and other polyphenols in wines by a continuous flow sample clean-up system followed by capillary electrophoresis separation. Anal. Chim. Acta. 359 : 27-38 https://doi.org/10.1016/S0003-2670(97)00668-5
  3. Arora, M. K. and Strange, R. N. (1991) Phytoalexin accumulation in groundnuts in response to wounding. Plant Sci. 78: 157-163 https://doi.org/10.1016/0168-9452(91)90194-D
  4. Chu, Q., O'Dwyer, M. and Zeece, M. G. (1998) Direct analysis of resveratrol in wine by micellar electrokinetic capillary electrophoresis. J. Agric. Food Chem. 46: 509-513 https://doi.org/10.1021/jf970669y
  5. Creasy, L. L. and Coffee, M. (1988) Phytoalexin production potential of grape berries. J. Am. Soc. Hortic. Sci. 113: 230-234
  6. Dixon, R. A. (2001) Natural products and plant disease resistance. Nature. 411: 843-847 https://doi.org/10.1038/35081178
  7. Fontecave, M., Lepoivre, M., Elleingand, E., Gerez, C. and Guittet, O. (1998) Resveratrol, a remarkable inhibitor of ribonucleotide reductase. FEBS Lett., Jan. 16; 421(3): 277-279 https://doi.org/10.1016/S0014-5793(97)01572-X
  8. Fremont, L. (2000) Biological effects of resveratrol. Life Sci. 66: 663-673 https://doi.org/10.1016/S0024-3205(99)00410-5
  9. Fremont, L., Belguendou, L and Delpal, S. (1999) Antioxidant activity of resveratrol and alcohol-free wine polyphenols realted to LDL oxidation and polyunsaturated fatty acids. Life Sci. 64: 2511-2521 https://doi.org/10.1016/S0024-3205(99)00209-X
  10. Lee, H. S., Sur, E. Y and Kim, W. K. (2004) Resveratrol Induces Apoptosis in SW480 Human Colon Cancer Cell Lines. Food Sci. Biotechnol. 13(1): 80-84
  11. Ingham, J. L. (1976) 3,5,4'-Trihydroxystilbene as a phytoalexin from groundnuts (Arachis hypogaea). Phytochemistry. 15: 1791-1793 https://doi.org/10.1016/S0031-9422(00)97494-6
  12. Jeandel, P., Bessis, R and Gautheron, B. (1991) The production of resveratrol (3,5,4'-thrhydroxystillbene) by grape berries in different developmental stages. Am. J. Enol. Vitic. 41: 41-46
  13. 조용진, 김재은, 전향숙, 김종태, 김성수, 김철진(2003) 국내산 포도의 부위별 레스베라트롤 함량. 한국식품과학회지 35(2): 306-308
  14. Keen, N. T. (1975) The isolation of phytoalexins from germinating seeds of Cicer arictinum, Vigna sinensis, Arachis hypogaea and other plants. Phytopathology. 65: 91-92 https://doi.org/10.1094/Phyto-65-91
  15. 김대중, 김상균, 김명희, 이희봉, 이준수(2003) 포도와 포도 가공품에 함유되어 있는 trans-resveratrol 의 함량 분석 .한국식품과학회지 35(5): 764-768
  16. Kim, K. S., Ghim, S. Y., Seu, Y. B and Song, B. H. (1999) High level of trans-resveratrol, a natural anti-cancer agent, found in Korean Noul red wine. J. Microbial. Biotechnol. 9: 691-693
  17. 김태희, 박은영, 양기숙(1998) Effect of Polygonum cuspidatum on $CCI_4$ Induced Hepatotoxicity and Lipid Peroxidation, 약학논문집 15: 23-32
  18. 이선숙, 서선정, 이부용, 이희봉, 이준수(2005) 침지조작에 의한 레스베라트롤 증가조건의 최적화. 한국식품영양과학회지 34(4): 567-571 https://doi.org/10.3746/jkfn.2005.34.4.567
  19. MacCarrone M, Lorenzon T, Guerrieri P, Agro A. F.(1999) Resveratrol prevents apoptosis in K562 cells by inhibiting lipoxygenase and cyclooxygenase activity. Eur. J. Biochem. 265: 37-34
  20. Maria, C., Claudio, C., Lisa, E., lsabeIla, N and Ingrid, Z. (2003) Direct HPLC Analysis of Quercetin and trans-Resveratrol in Red Wine, Grape, and Winemaking Byproducts. J. Agric. Food Chem. 51:5226-5231 https://doi.org/10.1021/jf034149g
  21. Pace-Asciak, C. R., Hahn, S. E., Diamandis, E. P., Soleas, G., Goldberg, D. M. (1995) The red wine phenolics transresveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: implications for protection against coronary heart disease. Clin. Chim. Acta. 235: 207-219 https://doi.org/10.1016/0009-8981(95)06045-1
  22. Pezet, R., Pont, V and Cuenat, P. (1994) Method to determine resveratrol and pterostilbene in grape berries and wine using high-performance liquid chromatography and highly sensitive fluorimetric detection. J. Chromatogr. A. 663: 191-197 https://doi.org/10.1016/0021-9673(94)85245-6
  23. Prasongsidh, B. C and Skurray, G. R. (1998) Capillary electrophoresis analysis trans- and cis-resveratrol, quercetin, catechin and gallic acid in wine. Food Chem. 62: 355-358 https://doi.org/10.1016/S0308-8146(97)00153-2
  24. Ragione, F. D., Cucciolla, V., Borriello, A., Pietra, V. D., Racioppi, L., Soldati, G., Manna, C., Galletti, P and Zappia, V. (1998) Resveratrol arrests the cell division cycle at S/G2 phase transition. Biochem. Biophys. Res. Commun., Sep. 8; 250(1)53:-58 https://doi.org/10.1006/bbrc.1998.9263
  25. Roggero, J. P. (2000) Study of the ultraviolet irradiation of resveratrol and wine. J. Food Comp. Anal. 13: 93-97 https://doi.org/10.1006/jfca.1999.0846
  26. Sanders, T. H and McMichael, R. W. (1997) Occurrence of resveratrol in edible peanuts. Book of Abstract, Las Yegas, NV; American Chemical Society: Washington, DC. Abstr. AGFD 214: 33
  27. Sanders, T. H., McMichael, R. W and Hendrix, K. W. (2000) Occurrence of Resveratrol in Edible Peanuts. J. Agric. Food Chem. 48: 1243-1246 https://doi.org/10.1021/jf990737b
  28. Sarig, P., Zutkhi, Y., Monjauze, A., Lisker, N and Ben-Arie, R. (1997) Phytoalexin elicitation in grape berries and their susceptibility to Rhizopus stolonifer. Physiol. Mol. Plant Path. 50: 337-347 https://doi.org/10.1006/pmpp.1997.0089
  29. Sato, M., Suzuki, Y., Okuda, T and Yokotsuka, K. (1997) Contents of resveratrol piceid, and their isomers in commercially available wines made from grapes cultivated in Japan. Biosci. Biotech. Biochem. 61: 1800-1805 https://doi.org/10.1271/bbb.61.1800
  30. Sieman, E. H and Creasy, L. L. (1992) Concentration of phytoalexin resveratrol in wine. Am. J. Enol. Vitec. 43: 49-52
  31. Sobolev, V. S and Cole, R. J. (1999) trans-Resveratrol content in commercial peanuts and peanut products. J. Agric. Food Chem. 47: 1435-1439 https://doi.org/10.1021/jf9809885
  32. Sobolev, V. S., Cole, R. J., Dorner, J. W and Yagen, B. (1999) Isolation, purification, and liquid chromatographic determination of stilbene phytoalexins in peanuts. J. Assoc. Off. Anal. Chem. Int. 78: 1177-1182
  33. Subbaramaiah K, Michaluart P, Chung W. J., Tanabe T, Telang N and Dannenberg A. J. (1999) Resveratrol inhibits cyclooxygenase-2 transcription in human mammary epithelial cell. Ann. N Y Acad. Sci. 889: 214-223 https://doi.org/10.1111/j.1749-6632.1999.tb08737.x