Effects of Biological Control Agent Algicidal Bacterium on the Phytoplankton Community and Microcystin-LR Contents in a Mesocosm Experiment

살조세균 적용이 식물플랑크톤 군집과 조류독소 분포에 미치는 영향

  • Jung, Seung-Won (Department of Life Science, Hanyang University) ;
  • Seo, Jong-Kun (Department of Life Science, Hanyang University) ;
  • Suh, Mi-Yeon (Seoul Metropolitan Government, Research Institute of Public Health and Environment) ;
  • Han, Myung-Soo (Department of Life Science, Hanyang University) ;
  • Kim, Baik-Ho (Department of Life Science, Hanyang University)
  • 정승원 (한양대학교 자연과학대학 생명과학과) ;
  • 서종근 (한양대학교 자연과학대학 생명과학과) ;
  • 서미연 (서울시 보건환경연구원 환경연구개발팀) ;
  • 한명수 (한양대학교 자연과학대학 생명과학과) ;
  • 김백호 (한양대학교 자연과학대학 생명과학과)
  • Published : 2005.06.30

Abstract

Biological control agents (BCA; algicidal bacterium Xantobacter autotrophycus) plus casitone media, strongly changed physicochemical variables, standing crops of phytoplankton and microcystin-LR phytoplankton in 100-L mesocosm constructed in a small hexagonal pond (3.5 m ${\times}$ 5 m). No M. aeruginosa showed by 8 days, and 60% of total standing crops of phytoplanktons were decreased by the BCA treatment. BCA treatment also induced a strong decline of cellular extracted microcystin-LR (MCLR) and a remarkable increase of dissolved MCLR with the decrement in standing crops of cyanobacteria. In addition, BCA strongly increased all nutrients, but new outbreak of phytoplanktons hardly showed in the experimental mesocosm. The field application of BCA to controling the cyanobacterial bloom in large lakes and reservoirs is not relevant due to high concentration of nutrients and toxins. Thus, a further study is needed to diminish the adverse effects after BCA treatment for water quality preservation.

매년 남조 Microcystis aeruginosa가 대발생하는 인공연못에 100 L mesocosm를 설치하고 생물제재 (Xantobacter autotrophycus + casitone)를 혼합 처리한 결과, 환경요인의 변화(pH, DO감소, 영양염 증가)와 함께 식물플랑크톤 군집의 뚜렷한 변화가 관찰되었다. 생물제재 처리후 M. aeruginosa는 점차 감소하여 8일에는 관찰되지 않았고, 식물플랑크톤 총 밀도의 약 60% 이상이 감소하였다. 또한 남조의 소멸과 함께 조체성 독소의 감소 및 용존성 독소가 증가하였으며, 뚜렷한 영양물질의 증가에도 불가하고 현존량이 증가하는 종은 나타나지 않았다. 이러한 영양물질이나 용존성 독소의 증가는 생물제재를 이용한 남조류 제어가 상수원 저수지와 같은 장소보다는 규모가 작은 연못이나 저수지 등에 적합하며, 생물제재 처리 이후 수질변화에 대한 적극적인 수질관리 대책이 마련되어야 할 것으로 판단되었다.

Keywords

References

  1. 김범철, 김호섭, 박호동, 최광순, 박종근. 1999. 국내 호수에서 발생한 남조류의 microcystin 함량과 독성 평가. 한국육수학회지 32: 288-294
  2. 박혜경. 2000. 녹조현상. 수질분야-환경관련미생물 21. 환경자료집 vol. 2
  3. 신정이, 박석순. 2001. 하천 수생식물의 영양염류 제거능 산정에 관한 연구. 한국물환경학회지 17: 201-213
  4. 오희목, 반용호, 박대균, 이진환, 맹주선. 1999. 대청호내 cyanobacteria에 의한 취기물질 생산. 한국육수학회지 32: 181-188
  5. 이정호, 박종근, 김은정. 2002. 국내 주요 호수의 식물플랑크톤 종조성 및 영양단계 평가. Algae 17: 275-281 https://doi.org/10.4490/ALGAE.2002.17.4.275
  6. 전만식, 김범철. 1999. 부레옥잠의 수중영양염 제거 잠재력에 관한 고찰. 한국환경물학회지 17: 117-124
  7. Ahn, C.Y, M.H. Park, S.H. Joung, H.S. Kim, K.Y. Jang and H.M. Oh. 2003. Growth inhibition of cyanobacteria by ultrasonic radiation: Laboratory and enclosure studies. Environ. Sci. Technol. 37: 3031-3037 https://doi.org/10.1021/es034048z
  8. APHA. 1995. Standard methods for the examination of water and wastewater. 19th Ed. APHA, AWWA, WPCF, Washington, p. 1134
  9. Bettarel, Y, C., Amblard, T. Sime-Ngando, J.F. Carrias, D. Sargos, F. Garabetian and P. Lavandier. 2003. Viral lysis, flagellate grazing potential, and bacterial production in Lake Pavin. Microbiol. 45: 119-127
  10. Burnham, J.C., S.A. Collart and M.J. Daft. 1984. Myxococcal predation of the cyanobacterium Phormidium luridum in aqueous environments. Arch. Microbiol. 137: 220-225 https://doi.org/10.1007/BF00414547
  11. Carmichael, W.W. 1988. Toxins of freshwater algae. In Tu AT (Ed.) Handbook of Natural Toxins, Vol. 3, Marine Toxins and Venoms. Marcel Dekker, New York, pp. 121-147
  12. Choi, H.-J., B.-H. Kim, J.-D. Kim and M.-S. Han. 2005. Streptomyces neyagawaensis as a control for the harzardous biomass of Microcystis aeruginosa (Cyanobacteria) in eutrophic freshwaters. Biological Control. 33: 335-343 https://doi.org/10.1016/j.biocontrol.2005.03.007
  13. Daft, M.J., S.B. McCord and W.D.P. Stewart. 1975. Ecological studies on algal-lysing bacteria in fresh waters. Freshwater Biol. 5: 577-596 https://doi.org/10.1111/j.1365-2427.1975.tb00157.x
  14. Dawson, R.M. 1998. The toxicology of microcystins. Toxicon. 36: 953-962 https://doi.org/10.1016/S0041-0101(97)00102-5
  15. Fukami, K., A. Yuzawa, T. Nishijima and Y. Hata. 1992. Isolation and properties of a bacterium inhibition the growth of Gymnodinium nagasakiense. Nippon Suisan Gakkaishi 58:1073-1077 https://doi.org/10.2331/suisan.58.1073
  16. Fukushima, M., N. Takamura, B.H. Kim, M. Nakagawa, L. Sun and Y. Zheng. 2000. The responses of an aquatic ecosystem to the manipulation of the filter-feeding silver carp (Hypophthalmichthys molitrix) Verh. Internat. Verein. Limnol. 27: 1-7
  17. Gosselain, V., J.-P. Descy, L. Virous, C. Joaquim-Justo, A. Hammer, A. Metens and S. Schweitzer. 1998. Grazing by large river zooplankton: a key to summer potamoplankton decline. The case of the Meuse and Moselle rivers in 1994 and 1995. Hydrobiologia 369/370: 199- 216 https://doi.org/10.1023/A:1017071909997
  18. Ha, K., M.H. Jang and G.J. Joo. 2003. Spatial and temporal dynamics of phytoplankton communities along a regulated river system, the Nakdong River, Korea. Hydrobiologia 470: 235-245 https://doi.org/10.1023/A:1015610900467
  19. Horne A.J., Goldman C.R. 1994. Limnology. 2nd ed. McGraw-Hill. New York
  20. Jung, S.W., J.-K. Seo, B.-R. Kim, B.-H. Kim and M.-S. Han. 2004. Potential in the application of algicidal bacterium Pseudomonas fluorescens HYK0210-SK09 to control centric diatom Stephanodiscus hantzschii in mesocosm experiments in the Han River, Korea. 1st Korean-Japan joint meeting of symposium. 2004. Pusan. Korea
  21. Kang, Y.-H, J.-D. Kim, B.-H. Kim, D.-S. Kong and M.-S. Han. 2005. Isolation and characterization of Bio-agent antagonistic to diatom, Stephanodiscus hantzschii. J. Microbiol. 98: 1030-1038
  22. Kasai, F., N. Takamura and S. Hatakeyama. 1993. Effects of simetyrene on growth of various freshwater algal taxa. Environ Pollu. 79: 77-83 https://doi.org/10.1016/0269-7491(93)90180-V
  23. Kim, B.H., M.K. Choi and N. Takamura. 2003. Phytoplankton preferences of young silver carp, Hypophthalmichthys molitrix, in hypereutrophic mesocosms during a warm season. J. Freshwater Ecol. 18: 69-77 https://doi.org/10.1080/02705060.2003.9663952
  24. Kim , B.-H. and S.O. Hwang. 2004 The structure of the plankton community and the cyanobacteria bloom during the rainy season in mesoeutrophic lake (Lake Juam), Korea, Kor. J. Sanit. 19: 51-59
  25. Kuosa, H., R. Autio, P. Kuuppo, O. Setälä and S. Tanskanen. 1997. Nitrogen, silicon and zooplankton grazing controlling the Baltic spring bloom: an experimental study. Estuarine, Coastal and Shelf Science. 45: 813- 821 https://doi.org/10.1006/ecss.1997.0241
  26. Lewis, D.L., H.P. Kollig and R.E. Hodson. 1986. Nutrient limitation and adaptation of microbial populations to chemical transformations. Appl. Environ. Microbiol. 51: 598-603
  27. Lloyd, M. and R.J. Ghelard. 1964. A table for calculating the equitability? component of species diversity. J. Anim. Ecol. 33: 421-425
  28. Lovejoy, C., J.P. Bowman and M.H. Gustaaf. 1998. Algicidal Effects of a Novel Marine Pseudoalteromonas Isolate (Class Proteobacteria, Gamma Subdivision) on Harmful Algal Bloom Species of the Genera Kattonella, Gymnodinium, and Heterosigma. Appl. Environ. Microbiol. 64: 2806-2813
  29. Manage, P.M., Z. Kawabata and S. Nakano. 2001. Dynamics of cyanophage-like and algicidal bacteria causing Microcystis aeruginosa mortality. Limnology 2: 73-78 https://doi.org/10.1007/s102010170002
  30. Margalef, R. 1958. Perspectives in ecology theory. Chicago, University of Chicago Press. 112 pp
  31. McNaughton, S.J. 1967. Structure and function in California grasslands. Ecology 49: 962-972
  32. Nagata S.T. Tsutusmi, A. Hasegawa, F. Yoshida and Y. Ueno 1997.: Enzyme Immunoassay for direct determination of microcystins in environmental water. J. Assoc. Off Anal. Chem. Int. 80: 408-417
  33. Ohki, K. and Y. Fujita. 1996. Occurrence of a temperate cyanophage lysogenising the marine cyanophyte Phormidium persicum. J. Phycol. 32: 365-370 https://doi.org/10.1111/j.0022-3646.1996.00365.x
  34. Pielou, E.C. 1966. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13: 131-144 https://doi.org/10.1016/0022-5193(66)90013-0
  35. Reynolds, C.D. 1985. The ecology of freshwater phytoplankton. Cambridge Univ Press. p. 384
  36. Sang, M., B.-H. Kim and M.-S. Han. 2004. Isolation and identification of an algicidal bacterium against Microcystis aeruginosa in freshwater. Korean Association of Biological Science, Seoul national University
  37. Shannon, C.E. and W. Weaver. 1963. The mathematical theory of communication. University Of Illinois Press, Urbana
  38. Shinya, K., I. Akiko, M. Atsushi and M. Masahoro. 2002. Isolation and identification of the antialgal compound, harmane (1-methyl-${\beta}$-carboline), produced by the algicidal bacterium, Pseudomonas sp. K44-1. J. Appl. Phycol. 14: 109-114 https://doi.org/10.1023/A:1019533414018
  39. Sigee, D.C., R. Glenn, M.J. Andrews, E.G. Bellinger, R.D. Butler, H.A.S. Epton and R.D. Hendry. 1999. Biological control of cyanobacteria: principles and possibilities. Hydrobiologia 395/396: 161-172 https://doi.org/10.1023/A:1017097502124
  40. Vincent, W.F. 1987. Dominance of blooming forming cyanobacteria (blue-green). New Zea, J. Mar. Freshwater Res. 21: 361-542 https://doi.org/10.1080/00288330.1987.9516233
  41. Wright, S.J., K. Redhead and H. Maudsley. 1981. Acanthamoeba castellanii, a predator of cyanobacteria. J. Gen. Microbiol. 125: 293-300
  42. Yamamoto, Y., T. Kouchiwa, Y. Hodoki, K. Hotta, H. Uchida and K. Harada. 1998. Distribution and identification of actinomycetes lysing cyanobacteria in a eutrophic lake. J. Appl. Phycol. 10: 391-397 https://doi.org/10.1023/A:1008077414808