익명성 메커니즘: 그룹 서명과 추적 가능한 서명

  • 최승걸 (서울대학교 전기,컴퓨터공학부) ;
  • 박근수 (서울대학교 컴퓨터공학부)
  • Published : 2005.01.30

Abstract

Keywords

References

  1. M. Abdalla, J. An, M. Bellare, and C. Namprepre. From identification to signatures via the Fiat-Shamir transform: Minimizing assumptions for security and forward-security. EUROCRYPT 2002, LNCS, Springer
  2. G. Ateniese, J.Camenish, M. Joye, and G. Tsudik. A practical and provably secure coalition-resistant group signature scheme. Crypto 2000, LNCS, Sphnger
  3. G. Ateniese and B. de Medeiros. Efficient Group Signatures without Trapdoors. ASIACRYPT, 2003, LNCS, Springer
  4. G. Ateniese and G. Tsudik. Some open issues and new directions in group signatures. Financial Cryptography 1999
  5. G. Ateniese, G. Tsudik. and D. Song. Quasi-efficient revocation of group signatures. Financial Cryptography 2002
  6. M. Bellare, D. Micciancio, and B.Warinshci. Foundations of group signatures: Formal definitions, siimplified requirements, and a construction based on general assumptions. EUROCRYPT 2003, LNCS, Springer
  7. M. Bellare, H. Shi, C. Zhang. Foundations of group signatures: The case of dynamic groups. Cryptology ePrint Archive, Report 2004/077, http://eprint.iacr.org/
  8. D. Boneh, B. Lynn, and H.Shacham. Short signatures from Weil paring. Asiacrypt 2001, volume 2248 of LNCS, Springer. Full paper: http://crypto.standard.edu/dabo/pubs.html
  9. D. Boneh, X. Boyen,and H. Shacham. Short Group Signatures. Crypto 2004, LNCS, Springer
  10. J. Camenisch. Efficient and generalized group signatures. EUROCRYPT 1997, LNCS, Springer
  11. J. Camenisch and A. Lysyanskaya. Efficient non-transferable anonymous multi-show credential system with optional anonymity revocation. EUROCRYPT 2001, LNCS, Springer
  12. J. Camenisch and M Stadler. Efficient group signature schemes for large groups. CRYPTO 1997, LNCS, Springer
  13. D. Chaum. Security without identification: Transactions systems to make big brother obsolete, Communications of the ACM, 28(10): 1030-1044, 1985
  14. D. Chaum and E. van Heyst. Group signatures. EUROCRYPT 1991, Springer
  15. L. Chen, TP. Pedersen. New group signature schemes. EUROCRYPT 1994, LNCS, Springer
  16. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems. Crypto 1986, LNCS, Springer
  17. T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A virtual machine-based platform for trusted computing. SOSP 2003
  18. A Lysyanskaya, Z Ramzan. Group blind digital signatures: A scalable solution to electronic cash. Financial Cryptography 1998
  19. A. Kiayias, Y. Tsiounis, and M. Yung. Traceable Signatures. EUROCRYPT 2004, LNCS, Springer
  20. A. Kiayias and M. Yung. Group signatures: Efficient constructions and annymity from trapdoor-holders. Cryptology ePrint Archive, Report 2004/076. http://eprint.iacr.org/
  21. J Kilian, E Petrank. Identity escrow. CRYPTO 1998, LNCS, Springer
  22. A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of elliptic curve traces for FR-reduction. IEICE Trans. Fundamentals, E84-A(5): 1234-43, May 2001
  23. L. Nguyen and R. Safavi-Naini. Efficient and Provably Secure Trapdoor-free Group Signatures Schemes from Bilinear Pairings. In Asiacrypt 2004. Available at: http://eprint.iacr.org/2004/l04
  24. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. Journal of Cryptology, 3(3) 361-396, 2000
  25. K. Rubin and A. Silverberg. Supersingular Abelian varieties in cryptology. Crypto 2002, LNCS, Springer
  26. C. Shnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3): 161-174, 1991
  27. Trusted Computing Group. Trusted Computing Platform Alliance (TCPA) Main Specification, 2003. Online: http://www.trustedcomputinggroup.org