Application of the Triple Abduction Model for Improving the Skills of Scientific Hypothesis Generation

과학적 가설의 생성력 향상을 위한 삼원귀추모형의 적용

  • Published : 2005.09.30

Abstract

The purpose of this study was to test effects of the Triple Abduction Model (TAM) for improving the skills of scientific hypothesis generation in science learning. Twenty-six students were selected for the TAM group and 27 others were selected for a traditional group from one high school. Researchers developed and administered 10 TAM and traditional-style activities. The degree of hypothesis explanation was evaluated during the experimental treatment. Each Subjects' ability in scientific hypothesis generation was assessed by the Science Knowledge Generation Test A and B. Test A was used as a protest and B for a posttest. The results of this study revealed that the degree of hypothesis explanation of TAM was significantly higher than the degree of the traditional group, and the mean of the TAM group was equal to the mean of traditional group on the pretest. Additionally, the mean of the TAM group was significantly higher than the mean of the control group on the posttest. Therefore, instruction with TAM was more effective than the instruction using traditionals method for increasing students' hypothesis generation skills.

이 연구의 목적은 과학학습에서 가설 생성력 향상에 미치는 삼원귀추모형(TAM)의 적용 효과를 검증하는 것이다. 이를 위해 TAM의 가설 생성 절차에 따른 가설 생성 활동 10개와 전통적인 방법에 따른 가설생성활동 10개를 개발하여 각각26명의 고등학생으로 구성된 TAM 집단과 27명의 전통 집단에 투입하였다. 가설 생성 활동 10개가 투입되는 과정에서 4개의 활동에서 학생들이 생성한 최종 가설의 설명도를 평가하였다. 또한 가설 생성력의 향상 정도를 검증하기 위해서 과학 지식 생성력 검사 A형과 B형을 사전과 사후에 각각 투입하여 연구 대상 학생들의 가설 생성력을 검사하였다. 연구 결과 TAM 집단이 생성한 가설의 설명도가 전통 집단의 가설보다 통계적으로 의미 있는 수준에서 높았다. 가설 생성력 검사에서는 TAM 집단과 전통 집단의 검사 점수가 사전 검사에서는 통계적으로 유의미한 수준에서 차이가 없었으나 사후에는 TAM집단이 의미 있게 높았다. 따라서 TAM을 적용한 가설 생성 활동은 전통적인 방법보다 가설 생성력 향상에 효과적이라고 할 수 있다.

References

  1. 권용주, 정진수, 박윤복, 강민정 (2003). 선언적 과학 지식의 생성 과정에 대한 과학철학적 연구 - 귀납적, 귀추적, 연역적 과정을 중심으로. 한국과학교육학회지, 23(3), 215-228
  2. 권용주, 정진수, 고경태, 박윤복 (2004). 과학지식 생성력 측정 도구의 개발. 한국생물교육학회지, 32(1), 67-78
  3. 권용주, 양일호, 정원우 (2000). 예비과학교사들의 가설 창안 과정에 대한 탐색적 분석. 한국과학교육학회지, 20(1), 29-42
  4. 김영학 (2004). 중학생을 위한 과학적 지식 생성 학습 프로그램의 개발. 한국교원대학교 석사학위 논문
  5. 정진수 (2004). 과학적 가설 생성에 대한 삼원 귀추 모형의 개발과 적용, 한국교원대학교 박사학위논문
  6. Anderson, O. R. (1997). A neurocognitive perspective on current learning theory and science instructional strategies. Science Education, 81, 67-89 https://doi.org/10.1002/(SICI)1098-237X(199701)81:1<67::AID-SCE4>3.3.CO;2-D
  7. Barnhart, C. L. (1953). The American College Dictionary. New York: Harper & Brothers
  8. Fischer, H. R. (2001). Abductive reasoning as a way of worldmaking. Foundation of Science, 6, 361-383
  9. Freedman, M. P. (1997). Relationship among laboratory instruction, attitude toward science, and achievement in science knowledge. Journal of Research in Science Teaching, 34(4), 343-358 https://doi.org/10.1002/(SICI)1098-2736(199704)34:4<343::AID-TEA5>3.0.CO;2-R
  10. Gerter, B. L., Cavallo, A. M. L., & Marek, E. A (2001). Relationships among informal learning environments, teaching procedures and scientific reasoning ability. International Journal of Science Education, 23(5), 535-549 https://doi.org/10.1080/09500690116971
  11. Glasson, G. E. (1989). The effects of hands-on and teacher demonstration laboratory methods, on science achievement in relation to reasoning ability and prior knowledge. Journal of Research in Science Teaching, 26(2), 121-131 https://doi.org/10.1002/tea.3660260204
  12. Hanson, N. R. (1958). Patterns of discovery: An inquiry into conceptual foundations of science. Cambridge, UK: Cambridge University Press
  13. Hodson, D. (1998). Teaching and learning science: Towards a personalized approach. Buckingham, UK: Open University Press
  14. Klahr, D., & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive Science, 12, 1-48 https://doi.org/10.1016/0364-0213(88)90007-9
  15. Kuhn, D., Amsel, E., & O'Loughin, M. (1988). The development of scientific thinking skills. San Diego, CA: Academic Press
  16. Kwon, Y., Jeong, J., & Park, Y. (in press). Roles of Abductive Reasoning and Prior Belief in Children's Generating Hypotheses on Pendulum Motion. Science & Education
  17. Lawson, A. E. (1995). Science teaching and the development of thinking. Wadsworth Publishing Company
  18. Lawson, A. E. (2000). How do humans acquire knowledge? and What does that imply about the nature of knowledge?. Science & Education, 9, 577-598 https://doi.org/10.1023/A:1008756715517
  19. Lawson, A. E. (2002). What does Galileo's discovery of Jupiter's moons tell us about the process of scientific discovery?. Science & Education, 11, 1-24 https://doi.org/10.1023/A:1013048828150
  20. Lazarowitz, R., Hertz-Lazarowitz, R., & Baird, J. H. (1995). Learning science in a cooperative setting: Academic achievement and affective outcomes. Journal of Research in Science Teaching, 31 (10), 1121-1131 https://doi.org/10.1002/tea.3660311006
  21. Moore, R., Clark, W. D., & Vodopich, D. S. (1998). Botany, 2rd ed. New York, NY: The McGraw-Hill, Inc.
  22. Musheno, B. V., & Lawson, A. E. (1999). Effects of learning cycle and traditional text on comprehension of science concepts by students at differing reasoning levels. Journal of Research in Science Teaching, 36(1), 23-28 https://doi.org/10.1002/(SICI)1098-2736(199901)36:1<23::AID-TEA3>3.0.CO;2-3
  23. Ohlsson, S. (1992). The Cognitive Skill of Theory Articulation: A Neglected Aspect of Science Education? Science & Education, 1, 181 -192 https://doi.org/10.1007/BF00572838
  24. Wenham, M. (1993). The nature and the role of hypothesis in school science investigations. International Journal of Science Education, 15(3), 231-240 https://doi.org/10.1080/0950069930150301