PROBLEM FOR STRONGLY $\alpha$-LOGARITHMIC CLOSE-TO-CONVEX FUNCTIONS"> ON THE $FEKETE-SZEG\"{O}$ PROBLEM FOR STRONGLY $\alpha$-LOGARITHMIC CLOSE-TO-CONVEX FUNCTIONS

  • Cho, Nak-Eun (Department of Applied Mathematics, College of Natural Sciences, Pukyong National University)
  • Published : 2005.12.31

Abstract

Let $CS^{\alpha}(\beta)$ denote the class of normalized strongly $\alpha$-logarithmic close-to-convex functions of order $\beta$, defined in the open unit disk $\mathbb{U}$ by $$\|arg\{\(\frac{f(z)}{g(z)}\)^{1-\alpha}\(\frac{zf'(z)}{g(z)\)^{\alpha}\}\|\leq\frac{\pi}{2}\beta,\;(\alpha,\beta\geq0)$$ where $g{\in}S^*$ the class of normalized starlike functions. In this paper, we prove sharp $Fekete-Szeg\"{o}$ inequalities for functions $f{\in}CS^{\alpha}(\beta)$.

Keywords