SOLUTION OF AN UNSOLVED PROBLEM IN BCK-ALGEBRA

Farhat Nisar and Shaban Ali Bhatti

Abstract

In this paper we introduced Semi-neutral BCK-algebra and investigate some of its properties. The notions of ideals and subalgebras coincide in Semi-neutral BCK-algebras. We also show that if the number of nonzero elements in a Semi-neutral BCKalgebra is n, then the number of ideals/subalgebras in it is 2^{n}. Further, we solved an open problem posed by W.A. Dudek in [2].

1. Introduction

In 1966 Y. Imai and K. Iseki introduced two classes of abstract algebras BCK-algebras and BCI-algebras [3,4]. BCI-algebras are a generalization of BCK-algebras. Various researchers have studied these algebras extensively and as a result a lot of literature has emerged. W.A. Dudek ([2]) has posed the open problem:

Open Problem

Describe the class of BCK-algerbas in which every subset containing o is a Subalgebra (an ideal).
In this paper we define Semi-neutral BCK-algebra and investigate some of its properties. The notions of ideals and subalgebras coincide in Semi-neutral BCK-algebras. We also show that if the number of nonzero elements in a Semi-neutral BCK-algebra is n, then the number of subalgebras (ideals) in it is 2^{n}.

[^0]Further, in Lemma 3 we answered the problem posed by W.A. Dudek and proved that if X is a Semi-neutral BCK-algebra, then every subset A in X containing o is a subalgebra (ideal) in X.

2. Preliminaries

A BCK-algebra X is an abstract algebra ($X, *, o$) of type (2,0), where * is a binary operation, o is a constant which is the smallest element in X, satisfying the following conditions; for all $x, y, z \in X$,
$1.1\left(\left(x^{*} y\right)^{*}\left(x^{*} z\right)\right)^{*}\left(z^{*} y\right)=o$
$1.2\left(x^{*}\left(x^{*} y\right)\right)^{*} y=o$
$1.3 x^{*} x=o$
$1.4 x^{*} y=o=y^{*} x \Rightarrow x=y$
$1.5 o^{*} x=o$ where $x^{*} y=o \Leftrightarrow x \leq y$
Moreover, the following properties hold in every BCK/BCI-algebra ($[5,7]$):
$1.6\left(x^{*} y\right)^{*} \approx=\left(x^{*} z\right)^{*} y$
$1.7 x \leq y \Rightarrow x * z \leq y^{*} z$ and $z^{*} y \leq z^{*} x$
$1.8 x^{*} O=x$
1.9 An implicative BCK-algebra is commutative and positive implicative. [7]
1.10 If A is an ideal in a BCK-algebra X, then the quotient algebra $X / A=\left\{{ }^{A} C_{x}: x \in X\right\}$, where ${ }^{A} C_{x}=\left\{y \in X: x^{*} y, y^{*} x \in A\right\}$, is a. BCK-algebra. [6]
1.11 Definition [5] Let X be a BCI-algebra and S be a nonempty subset of X, S is known as a subalgerba of X if for $x, y \in S, x^{*} y \in S$.
1.12 Definition $[6,7]$ Let X be a BCK-algerba and I be a nonempty subset of $X . I$ is known as an ideal in X if
(i) $o \in I$
(ii) $x^{*} y, y \in I \Rightarrow x \in I$
1.13 Definition [6] A nonempty subset I of a BCK-algebra X is called an implicative ideal, if
(i) $o \in I$
(ii) $\left(y^{*} x\right)^{*} \tilde{\sim}, x^{*} \tilde{\sim} \Rightarrow y^{*} \tilde{\sim} \in I$
1.14 Definition [1] Let X be a BCI-algebra, and $x, y \in X$. Then x, y are said to be comparable if and only if $x^{*} y=o$ or $y^{*} x=o$. Further, we shall say that x proceeds y and y succeeds x if and only if $x^{*} y=o$ and denote it by $x \rightarrow y$ or $x \leq y$.
Similarly in BCK-algebras, if $x^{*} y=o$ or $y^{*} x=o$, then x and y are comparable.
1.15 Definition [7] A BCK-algebra X is said to be commutative if $\mathbf{y}^{*}\left(\mathbf{y}^{*} \mathbf{x}\right)=\mathbf{x}^{*}\left(\mathbf{x}^{*} \mathbf{y}\right)$ holds for all $x, y \in X$.
1.16 Definition [7] i) A BCK-algebra X is said to be implicative if $\mathrm{x}^{*}\left(\mathbf{y}^{*} \mathrm{x}\right)=\mathrm{x}$ holds for all $x, y \in X$.
ii) If every ideal of a BCK-algebra M is implicative then M is implicative. [6]
1.17 Definition [7] A BCK-algebra X is said to be positive implictive if $\left(\mathbf{x}^{*} \mathbf{y}\right)^{*} \mathbf{z}=\left(\mathbf{x}^{*} \mathbf{z}\right)^{*}\left(\mathbf{y}^{*} \mathbf{z}\right)$ holds for all $x, y, z \in X$.
In [7] it is also shown that a BCK-algebra X is positive implicative if and only if $x^{*} y=\left(x^{*} y\right)^{*} y$.
1.18 Definition Let X be a BCK-algebra. An element x_{0} in X is said to be a Semi-neutral element in X if and only if for all $x \neq$ $x_{0}, x^{*} x_{0}=x$ and $x_{0}^{*} x=x_{0}$.

The set of all Semi-neutral elements is denoted as $S(X)$ and is known as the semi-neutral part of the BCK-algebra X. Obviously $S(X)$ is nonempty, because X is a BCK-algebra, therefore $o^{*} x=o$ and $x^{*} o=x$, so $o \in S(X)$.

Note that any nonzero element x of a BCK-algebra X such that $x \leq y$ for some $y \in X$ (or, $y \leq x$ for some $y(\neq 0) \in X$) cannot be a semi-neutral element of X.
1.19 Definition A BCK-algebra X is said to be a Semi-neutral BCK-algebra if it satisfies: for all $x, y \in X, x \neq y \Rightarrow x^{*} y=x$.
Equivalently, if $X=S(X)$, then we say that X is a Semi-neutral BCK-algebra.
Note that the BCK-algebra of order 2 is semi neutral.
Example 1 Let $X=\{o, a, b, c, d, e, f\}$ be a BCK-algebra. The multiplication table (Table 1) and the tree diagram representing the BCKalgebra are known as follows:

Table 1

*	o	a	b	c	d	e	f
o	o	o	o	o	o	o	o
a	a	o	a	a	a	a	a
b	b	b	o	b	b	b	b
c	c	c	c	o	c	c	c
d	d	d	d	d	o	d	d
e	e	e	e	e	e	o	e
f	f	f	f	f	f	f	o

By routine calculations, we know that o, a, b, c, d, e, f are the Semineutral elements. Here $S(X)=\{o, a, b, c, d, e, f\}=X$, therefore X is a Semi-neutral BCK-algebra.

Example 2 Let $X=\{o, a, b, c, d\}$ be a BCK-algebra. The multiplication table (Table 2) and the tree diagram representing the BCKalgebra are shown as follows:

Table 2

Note that for all $x \neq 0 \in X, x^{*} d=x$ and $d^{*} x=d$. Hence d is the only nonzero Semi-neutral element in X. Hence $S(X)=\{o, d\}$.

Example 3 Let $X=\{o, a, b, c, d, e\}$ be a BCK-algebra. The multiplication table (Table 3) and the tree diagram representing the BCKalgebra are shown as follows:

Table 3

$*$	o	a	b	c	d	e
o	o	o	o	o	o	o
a	a	o	o	a	a	a
b	b	a	o	b	b	b
c	c	c	c	o	c	c
d	d	d	d	d	o	d
e	e	e	e	e	e	o

By routine calculations, we know that c, d, e are the nonzero Semineutral elements. However $S(X)=\{o, c, d, e\}$.

Example 4 Let $X=\{o, a, b, c, d, e, f\}$ be a BCK-algebra. The multiplication table (Table 4) and the tree diagram representing the BCKalgebra are shown as follows:

Table 4

*	o	a	b	c	d	e	f
o	o	o	o	o	o	o	o
a	a	o	o	o	o	a	a
b	b	b	o	o	o	b	b
c	c	c	b	o	b	c	c
d	d	c	a	a	o	d	d
e	e	e	e	e	e	o	e
f	f	f	f	f	f	f	o

By routine calculations, we know that e, f are the nonzero Semineutral elements. Hence $S(X)=\{o, e, f\}$.

Lemma 1 The semi-neutral part of a BCK-algebra X is an ideal in X.

Proof Obviously $o \in S(X)$
Let $x^{*} y, y \in S(X)$. Since $y \in S(X)$, therefore by definition 1.18 , for all $x \neq y$.

$$
\begin{equation*}
y^{*} x=y \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{*} y=x \tag{2}
\end{equation*}
$$

because of equation (2), $x^{*} y \in S(X) \Rightarrow x \in S(X)$. Hence $S(X)$ is an ideal in X.

Lemma 2 Each subalgebra of a Semi-neutral BCK-algebra X is an ideal in X.

Proof Let X be a Semi-neutral BCK-algebra and S be a subalgebra of X. Then, $x, y \in S \Rightarrow x^{*} y \in S$. Since X is a Semi-neutral, therefore $X=S(X)$, so each element in X is a semi-neutral element. Therefore each element in S is also a semi-neutral element. Let x, y be any two elements in S. Then

$$
x^{*} y=x
$$

and

$$
y^{*} x=y
$$

Now

$$
y^{*} x, x \in S \Rightarrow y \in S
$$

and

$$
x^{*} y, y \in S \Rightarrow x \in S
$$

which implies that S is an ideal in X.
From above Lemma it follows that in case of Semi-neutral BCKalgebras the notions of ideals and sub-algebras coincide with each other.

Lemma 3 Let X be a Semi-neutral BCK-algebra, then every subset containing o is a subalgebra/an ideal of X.

Proof Let A be any subset of X containing o. As each element in X is a Semi-neutral element therefore each element in A is also Semineutral.
Let x be any element in A. Then

$$
\begin{equation*}
x^{*} o=x \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
o^{*} x=o \tag{2}
\end{equation*}
$$

Also by definition $1.18 x^{*} y=x$ holds for all $x, y \in A$.
Further for $x, y, z \in A$

$$
\left.\left(x^{*} y\right)^{*}\left(x^{*} z\right)=x^{*} x=o \leq z=z^{*} y \text { (becasue } 0 \leq z\right)
$$

i.e.

$$
\begin{equation*}
\left(x^{*} y\right)^{*}\left(x^{*} z\right) \leq z^{*} y \tag{3}
\end{equation*}
$$

and

$$
x^{*}\left(x^{*} y\right)=x^{*} x=o \leq y(\text { becasue } o \leq y)
$$

i.e.

$$
\begin{equation*}
x^{*}\left(x^{*} y\right) \leq y \tag{4}
\end{equation*}
$$

Since $x \in A \subseteq X$, therefore

$$
\begin{equation*}
x^{*} x=o \tag{5}
\end{equation*}
$$

holds for all $x \in A$.
From (1),....,(5) it follows that A is a Semi-neutral BCK-algebra.
Hence A is a sub algebra of X. As A is an arbitrary subset of X containing O, therefore each subset of X containing 0 is a sub algebra of X. Because of Lemma 2, each subset of X containing 0 is an ideal of X.

Lemma 4 Let n be the number of nonzero elements in a Semi-neutral BCK-algebra X. Then X has 2^{n} ideals/subalgebras.

Proof Consider those ideals/subalgebras of X that have k nonzero elements each, where $k=0,1,2, \cdots, n$. Since number of ways in which k nonzero elements can be chosen out of n nonzero elements is ${ }^{n} C_{k}=n!/ k!(n-k)!$, therefore the number of ideals/subalgebras in X having k nonzero elements each in ${ }^{n} C_{k}$. Hence the total number of ideals/subalgebras in X is

$$
\sum_{k=0}^{n}\left({ }^{n} C_{k}\right)
$$

Now

$$
(1+x)^{n}=\sum_{k=0}^{n}\left({ }^{n} C_{k}\right) x^{k}
$$

put $x=1$ in above equation and get

$$
(1+1)^{n}=\sum_{k=0}^{n}\left({ }^{n} C_{k}\right)=2^{n}
$$

Hence the proof.
Lemma 5 If X is a semi-neutral BCK-algebra of finite order, then it is unique.

Proof Let X be a Semi-neutral BCK-algerba and assume that $o(X)=$ n. So $X=S(X)$ and by the definition of $1.19, x * y=x$ holds for all $x, y \in X$. Thus, each cell of the Calay's table representing the semineutral BCK-algebra has a unique value. Hence, there exists only a unique BCK-algebra of order n.

Lemma 6 If X is a BCK-chain, then $S(X)=\{o\}$.
Proof Straight Forward.

Lemma 7 Let X be a Semi-neutral BCK-algebra. Then the quotient algebra X / A is a Semi-neutral BCK-algerba, for A being an ideal in X.

Proof Let X be a BCK-algebra which is Semi-neutral and A is an ideal in X, then by $1.10 X / A$ is a BCK-algebra. We show that X / A is Semi-neutral. Let $X / A=\left\{{ }^{A} C_{X}: x \in X\right\}$ be a quotient algebra, where

$$
{ }^{A} C_{x}=C_{x}=\left\{y \in X: x^{*} y, y^{*} x \in A\right\}
$$

under the binary operation * defined as follows:

$$
C_{x}^{*} C_{y}=C_{x \cdot y}
$$

for $C_{x}, C_{y} \in X / A$
Let $C_{x}, C_{y} \in X / A$, for $x, y \in X$. Then

$$
\begin{aligned}
C_{x}^{*} C_{y} & =\mathrm{C}_{X \cdot y} \\
& \left.=C_{x} \text { (because of } 1.19, x^{*} y=x, \text { for } x, y \in X\right)
\end{aligned}
$$

Also

$$
\begin{aligned}
C_{y},{ }^{*} C_{x} & =\mathrm{C}_{y^{*}-X} \\
& \left.=C_{y} \text { (because of } 1.19, y^{*} x=y, \text { for } x, y \in X\right)
\end{aligned}
$$

\Rightarrow each class C_{x} of X / A is a Semi-neutral element.
Hence X / A is a Semi-neutral BCK-algebra.
Lemma 8 A Semi-neutral BCK-algebra is commutative, positive implicative and implicative.

Proof Assume that X is a Semi-neutral BCK-algebra. Then $X=$ $S(X)$.
Let $x, y \in S(X)$. Then by definition of Semi-neutral BCK-algebra

$$
\begin{equation*}
x * y=x \tag{1}
\end{equation*}
$$

holds $\forall x, y \in X$.
Now using (1)

$$
\begin{equation*}
x *(x * y)=x * x=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
y *(y * x)=y * y=0 \tag{3}
\end{equation*}
$$

From (2) and (3) it follows that

$$
x *(x * y)=y *(y * x)
$$

Which implies that X is commutative.
Further for x, y and $z \in X$, using (1)

$$
\begin{equation*}
(x * y) * z=x * z=x \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
(x * z) *(y * z)=x * y=x \tag{5}
\end{equation*}
$$

From (4) and (5) it follows that

$$
(x * y) * z=(x * z) *(y * z)
$$

Which implies that X is positive implicative.
Also using (1)

$$
x^{*}\left(y^{*} x\right)=x^{*} y=x \Rightarrow x^{*}\left(y^{*} x\right)=x
$$

By 1.16(i), X is an implicative BCK-algebra.
Lemma 9 Every ideal in a Semi-neutral BCK-algebra is an implicative ideal.

Proof Let A be any ideal in a Semi-neutral BCK-algebra X. Then
(i) $o \in A$
(ii) $y^{*} x, x \in A \Rightarrow y \in A$

Because X is a semi neutral BCK-algebra, therefore by definition 1.19. $x^{*} y=x$ holds $\forall x, y \in X$, therefore

$$
y^{*} x=\left(y^{*} x\right)^{*} \ddot{\sim}, x=x^{*} z, y=y^{*} z
$$

Thus (ii) implies

$$
\left(y^{*} x\right)^{*} z, x^{*} z \in A \Rightarrow y^{*} z \in A
$$

Hence A is an implicative ideal.
From Lemma 9 , because of 1.16 (ii), it follows that the Semi-neutral BCK -algebra is an implicative BCK-algebra.

REFERENCES

[1] Bhatti S.A., Chaudhry, M.A. and Ahmad B. (1989): On classification of BCI-algebras, Math Japonica 34, 865-876.
[2] W.A. Dudek: Unsolved problems in BCK-algebras, East Asian Math. J., 17 (2001), 115-128.
[3] Y. Imai and K. Iseki: On axiom system of prepositional calculi XIV, Proc. Japan Acad: 42(1966), 19-22.
[4] K. Iseki: An algebra related with a prepositional calculus, Proc. Japan Acad: 42 (1966), 26-29.
[5] Iseki K. (1980): On BCI-algebras, Math. Seminar notes, 8, 125-130.
[6] Iseki K. and Tanaka S. (1976): Ideal theory of BCK-algerbas, Math Japonica 21, 351-366.
[7] Iseki K. and Tanaka S. (1978): An introduction to the theory of BCK-algerbas. Math. Japonica, 23, 1-26.

Department of Mathematics
Queen Mary College
Lahore - Pakistan
E-mail: fhtnr2003@yahoo.com
Department of Mathematics
University of the Punjab
Lahore - Pakistan
E-mail: shabanbhatti@math.pu.edu.pk

[^0]: Received March 22, 2005.
 2000 Mathematics Subject Classification: 03G25, 06F35.
 Key words and phrases: BCK-algebra, Semi-neutral elements, Semi neutral BCK-algebra.

