East Asian Math. J. 21 (2005), No. 1, pp. 49-59

SOLUTION OF AN UNSOLVED PROBLEM IN BCK-ALGEBRA

FARHAT NISAR AND SHABAN ALI BHATTI

ABSTRACT. In this paper we introduced Semi-neutral BCK-algebra and investigate some of its properties. The notions of ideals and subalgebras coincide in Semi-neutral BCK-algebras. We also show that if the number of nonzero elements in a Semi-neutral BCKalgebra is n, then the number of ideals/subalgebras in it is 2^n . Further, we solved an open problem posed by W.A. Dudek in [2].

1. Introduction

In 1966 Y. Imai and K. Iseki introduced two classes of abstract algebras BCK-algebras and BCI-algebras [3,4]. BCI-algebras are a generalization of BCK-algebras. Various researchers have studied these algebras extensively and as a result a lot of literature has emerged. W.A. Dudek ([2]) has posed the open problem:

Open Problem

Describe the class of BCK-algerbas in which every subset containing o is a Subalgebra (an ideal).

In this paper we define Semi-neutral BCK-algebra and investigate some of its properties. The notions of ideals and subalgebras coincide in Semi-neutral BCK-algebras. We also show that if the number of nonzero elements in a Semi-neutral BCK-algebra is n, then the number of subalgebras (ideals) in it is 2^n .

Received March 22, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 03G25, 06F35.

Key words and phrases: BCK-algebra, Semi-neutral elements, Semi neutral BCK-algebra.

Further, in Lemma 3 we answered the problem posed by W.A. Dudek and proved that if X is a Semi-neutral BCK-algebra, then every subset A in X containing o is a subalgebra (ideal) in X.

2. Preliminaries

A BCK-algebra X is an abstract algebra (X, *, o) of type (2, 0), where * is a binary operation, o is a constant which is the smallest element in X, satisfying the following conditions; for all $x, y, z \in X$,

- 1.1 $((x^*y)^*(x^*z))^*(z^*y) = o$ 1.2 $(x^*(x^*y))^*y = o$ 1.3 $x^*x = o$ 1.4 $x^*y = o = y^*x \Rightarrow x = y$ 1.5 $o^*x = o$ where $x^*y = o \Leftrightarrow x \le y$ Moreover, the following properties hold in every BCK/BCI-algebra ([5, 7]): 1.6 $(x^*y)^*z = (x^*z)^*y$ 1.7 $x \le y \Rightarrow x * z \le y^*z$ and $z^*y \le z^*x$
- 1.8 $x^*o = x$
- 1.9 An implicative BCK-algebra is commutative and positive implicative. [7]
- 1.10 If A is an ideal in a BCK-algebra X, then the quotient algebra $X/A = \{{}^{A}C_{x} : x \in X\}$, where ${}^{A}C_{x} = \{y \in X : x^{*}y, y^{*}x \in A\}$, is a BCK-algebra. [6]

1.11 Definition [5] Let X be a BCI-algebra and S be a nonempty subset of X, S is known as a subalgerba of X if for $x, y \in S$, $x^*y \in S$.

1.12 Definition [6,7] Let X be a BCK-algerba and I be a nonempty subset of X. I is known as an ideal in X if

(i)
$$o \in I$$

(ii) $x^*y, y \in I \Rightarrow x \in I$

1.13 Definition [6] A nonempty subset I of a BCK-algebra X is called an implicative ideal, if

(i)
$$o \in I$$

(ii) $(y^*x)^*z, x^*z \Rightarrow y^*z \in I$

1.14 Definition [1] Let X be a BCI-algebra, and $x, y \in X$. Then x, y are said to be comparable if and only if $x^*y = o$ or $y^*x = o$. Further, we shall say that x proceeds y and y succeeds x if and only if $x^*y = o$ and denote it by $x \to y$ or $x \leq y$.

Similarly in BCK-algebras, if $x^*y = o$ or $y^*x = o$, then x and y are comparable.

1.15 Definition [7] A BCK-algebra X is said to be commutative if $\mathbf{y}^*(\mathbf{y}^*\mathbf{x}) = \mathbf{x}^*(\mathbf{x}^*\mathbf{y})$ holds for all $x, y \in X$.

1.16 Definition [7] i) A BCK-algebra X is said to be implicative if $\mathbf{x}^*(\mathbf{y}^*\mathbf{x}) = \mathbf{x}$ holds for all $x, y \in X$.

ii) If every ideal of a BCK-algebra M is implicative then M is implicative. [6]

1.17 Definition [7] A BCK-algebra X is said to be positive implicitve if $(\mathbf{x}^*\mathbf{y})^*\mathbf{z} = (\mathbf{x}^*\mathbf{z})^*(\mathbf{y}^*\mathbf{z})$ holds for all $x, y, z \in X$.

In [7] it is also shown that a BCK-algebra X is positive implicative if and only if $x^*y = (x^*y)^*y$.

1.18 Definition Let X be a BCK-algebra. An element x_0 in X is said to be a **Semi-neutral** element in X if and only if for all $x \neq x_0$, $x^*x_0 = x$ and $x_0^*x = x_0$.

The set of all **Semi-neutral** elements is denoted as S(X) and is known as the semi-neutral part of the BCK-algebra X. Obviously S(X) is nonempty, because X is a BCK-algebra, therefore $o^*x = o$ and $x^*o = x$, so $o \in S(X)$.

Note that any nonzero element x of a BCK-algebra X such that $x \leq y$ for some $y \in X$ (or, $y \leq x$ for some $y(\neq 0) \in X$) cannot be a semi-neutral element of X.

1.19 Definition A BCK-algebra X is said to be a **Semi-neutral BCK-algebra** if it satisfies: for all $x, y \in X, x \neq y \Rightarrow x^*y = x$. Equivalently, if X = S(X), then we say that X is a Semi-neutral BCK-algebra.

Note that the BCK-algebra of order 2 is semi-neutral.

Example 1 Let $X = \{o, a, b, c, d, e, f\}$ be a BCK-algebra. The multiplication table (Table 1) and the tree diagram representing the BCK-algebra are known as follows:

*	0	a	b	с	d	е	f
0	0	0	0	0	0	0	0
а	а	0	а	а	а	а	а
b	b	b	0	b	b	р	b
С	с	с	С	0	с	с	с
d	d	d	d	d	0	d	d
е	е	е	е	е	е	0	е
f	f	f	f	f	f	f	0
a b c d e f							

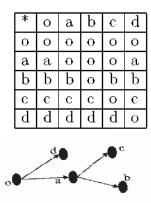
Table 1

By routine calculations, we know that o, a, b, c, d, e, f are the **Semi-neutral** elements. Here $S(X) = \{o, a, b, c, d, e, f\} = X$, therefore X is a Semi-neutral BCK-algebra.

Example 2 Let $X = \{o, a, b, c, d\}$ be a BCK-algebra. The multiplication table (Table 2) and the tree diagram representing the BCK-algebra are shown as follows:

Table 2

52



Note that for all $x \neq 0 \in X$, $x^*d = x$ and $d^*x = d$. Hence d is the only nonzero Semi-neutral element in X. Hence $S(X) = \{o, d\}$.

Example 3 Let $X = \{o, a, b, c, d, e\}$ be a BCK-algebra. The multiplication table (Table 3) and the tree diagram representing the BCK-algebra are shown as follows:

Table 3

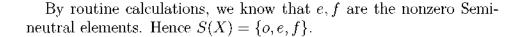
*	0	а	b	с	d	e		
0	0	0	0	0	0	0		
a	a	0	0	а	a	а		
b	b	а	0	b	b	b		
с	с	с	с	0	с	с		
d	d	d	d	d	0	d		
е	е	е	е	е	e	0		

By routine calculations, we know that c, d, e are the nonzero Semineutral elements. However $S(X) = \{o, c, d, e\}$.

Example 4 Let $X = \{o, a, b, c, d, e, f\}$ be a BCK-algebra. The multiplication table (Table 4) and the tree diagram representing the BCK-algebra are shown as follows:

*	0	а	b	с	d	е	f	
0	0	0	0	0	0	0	0	
а	а	0	0	0	0	а	a	
b	b	b	0	0	0	b	b	
с	с	с	b	0	b	с	с	
d	d	с	а	a	0	d	d	
е	е	е	е	e	е	0	е	
f	f	f	f	f	f	f	0	

Table 4



Lemma 1 The semi-neutral part of a BCK-algebra X is an ideal in X.

Proof Obviously $o \in S(X)$

Let $x^*y, y \in S(X)$. Since $y \in S(X)$, therefore by definition 1.18, for all $x \neq y$.

$$y^*x = y \tag{1}$$

and

$$x^*y = x \tag{2}$$

because of equation (2), $x^*y \in S(X) \Rightarrow x \in S(X)$. Hence S(X) is an ideal in X.

Lemma 2 Each subalgebra of a Semi-neutral BCK-algebra X is an ideal in X.

Proof Let X be a Semi-neutral BCK-algebra and S be a subalgebra of X. Then, $x, y \in S \Rightarrow x^*y \in S$. Since X is a Semi-neutral, therefore X = S(X), so each element in X is a semi-neutral element. Therefore each element in S is also a semi-neutral element. Let x, y be any two elements in S. Then

$$x^*y = x$$

and

$$y^*x = y$$

Now

$$y^*x, x \in S \Rightarrow y \in S$$

and

$$x^*y, y \in S \Rightarrow x \in S$$

which implies that S is an ideal in X.

From above Lemma it follows that in case of Semi-neutral BCKalgebras the notions of ideals and sub-algebras coincide with each other.

Lemma 3 Let X be a Semi-neutral BCK-algebra, then every subset containing o is a subalgebra/an ideal of X.

Proof Let A be any subset of X containing o. As each element in X is a Semi-neutral element therefore each element in A is also Semi-neutral.

Let x be any element in A. Then

$$x^* o = x \tag{1}$$

and

$$o^*x = o \tag{2}$$

Also by definition 1.18 $x^*y = x$ holds for all $x, y \in A$. Further for $x, y, z \in A$

$$(x^*y)^*(x^*z) = x^*x = o \le z = z^*y$$
 (becasue $0 \le z)$

i.e.

$$(x^*y)^*(x^*z) \le z^*y \tag{3}$$

and

$$x^*(x^*y) = x^*x = o \le y$$
 (becasue $o \le y$)

i.e.

$$x^*(x^*y) \le y \tag{4}$$

Since $x \in A \subseteq X$, therefore

$$x^*x = o \tag{5}$$

holds for all $x \in A$.

From $(1),\ldots,(5)$ it follows that A is a Semi-neutral BCK-algebra. Hence A is a sub algebra of X. As A is an arbitrary subset of X containing O, therefore each subset of X containing 0 is a sub algebra of X. Because of Lemma 2, each subset of X containing 0 is an ideal of X.

Lemma 4 Let n be the number of nonzero elements in a Semi-neutral BCK-algebra X. Then X has 2^n ideals/subalgebras.

Proof Consider those ideals/subalgebras of X that have k nonzero elements each, where $k = 0, 1, 2, \dots, n$. Since number of ways in which k nonzero elements can be chosen out of n nonzero elements is ${}^{n}C_{k} = n!/k!(n-k)!$, therefore the number of ideals/subalgebras in X having k nonzero elements each in ${}^{n}C_{k}$. Hence the total number of ideals/subalgebras in X is

$$\sum_{k=0}^{n} ({}^{n}C_{k})$$

Now

$$(1+x)^n = \sum_{k=0}^n ({}^nC_k)x^k$$

put x = 1 in above equation and get

$$(1+1)^n = \sum_{k=0}^n ({}^nC_k) = 2^n$$

Hence the proof.

Lemma 5 If X is a semi-neutral BCK-algebra of finite order, then it is unique.

56

Proof Let X be a Semi-neutral BCK-algerba and assume that o(X) = n. So X = S(X) and by the definition of 1.19, x * y = x holds for all $x, y \in X$. Thus, each cell of the Calay's table representing the semi-neutral BCK-algebra has a unique value. Hence, there exists only a unique BCK-algebra of order n.

Lemma 6 If X is a BCK-chain, then $S(X) = \{o\}$.

Proof Straight Forward.

Lemma 7 Let X be a Semi-neutral BCK-algebra. Then the quotient algebra X/A is a Semi-neutral BCK-algerba, for A being an ideal in X.

Proof Let X be a BCK-algebra which is Semi-neutral and A is an ideal in X, then by 1.10 X/A is a BCK-algebra. We show that X/A is Semi-neutral. Let $X/A = \{{}^{A}C_{X} : x \in X\}$ be a quotient algebra, where

$${}^{A}C_{x} = C_{x} = \{y \in X : x^{*}y, y^{*}x \in A\}$$

under the binary operation * defined as follows:

$$C_x^*C_y = C_{x^*y}$$

for $C_x, C_y \in X/A$ Let $C_x, C_y \in X/A$, for $x, y \in X$. Then

$$C_x^*C_y = \mathbf{C}_X \cdot_y$$

= C_x (because of 1.19, $x^*y = x$, for $x, y \in X$)

Also

$$C_y,^*C_x = C_{y^*X}$$

= C_y (because of 1.19, $y^*x = y$, for $x, y \in X$)

 \Rightarrow each class C_x of X/A is a Semi-neutral element. Hence X/A is a Semi-neutral BCK-algebra.

Lemma 8 A Semi-neutral BCK-algebra is commutative, positive implicative and implicative.

Proof Assume that X is a Semi-neutral BCK-algebra. Then X = S(X).

Let $x, y \in S(X)$. Then by definition of Semi-neutral BCK-algebra

$$x * y = x \tag{1}$$

holds $\forall x, y \in X$. Now using (1)

$$x * (x * y) = x * x = 0 \tag{2}$$

and

58

$$y * (y * x) = y * y = 0$$
 (3)

From (2) and (3) it follows that

 $x \ast (x \ast y) = y \ast (y \ast x)$

Which implies that X is commutative. Further for x, y and $z \in X$, using (1)

$$(x * y) * z = x * z = x$$
 (4)

and

$$(x * z) * (y * z) = x * y = x$$
(5)

From (4) and (5) it follows that

(x * y) * z = (x * z) * (y * z)

Which implies that X is positive implicative. Also using (1)

$$x^*(y^*x) = x^*y = x \Rightarrow x^*(y^*x) = x$$

By 1.16(i), X is an implicative BCK-algebra.

Lemma 9 Every ideal in a Semi-neutral BCK-algebra is an implicative ideal.

Proof Let A be any ideal in a Semi-neutral BCK-algebra X. Then

(i) $o \in A$ (ii) $y^*x, x \in A \Rightarrow y \in A$ Because X is a semi neutral BCK-algebra, therefore by definition 1.19. $x^*y = x$ holds $\forall x, y \in X$, therefore

$$y^*x = (y^*x)^*z, \ x = x^*z, \ y = y^*z$$

Thus (ii) implies

$$(y^*x)^*z, \ x^*z \in A \Rightarrow y^*z \in A$$

Hence A is an implicative ideal.

From Lemma 9, because of 1.16 (ii), it follows that the Semi-neutral BCK-algebra is an implicative BCK-algebra.

REFERENCES

- Bhatti S.A., Chaudhry, M.A. and Ahmad B. (1989): On classification of BCI-algebras, Math Japonica 34, 865-876.
- [2] W.A. Dudek: Unsolved problems in BCK-algebras, East Asian Math. J., 17 (2001), 115-128.
- [3] Y. Imai and K. Iseki: On axiom system of prepositional calculi XIV, Proc. Japan Acad: 42(1966), 19-22.
- [4] K. Iseki: An algebra related with a prepositional calculus, Proc. Japan Acad: 42 (1966), 26-29.
- [5] Iseki K. (1980): On BCI-algebras, Math. Seminar notes, 8, 125-130.
- [6] Iseki K. and Tanaka S. (1976): Ideal theory of BCK-algerbas, Math Japonica 21, 351-366.
- [7] Iseki K. and Tanaka S. (1978): An introduction to the theory of BCK-algerbas. Math. Japonica, 23, 1-26.

Department of Mathematics Queen Mary College Lahore - Pakistan *E-mail*: fhtnr2003@yahoo.com

Department of Mathematics University of the Punjab Lahore - Pakistan *E-mail*: shabanbhatti@math.pu.edu.pk

60