DOI QR코드

DOI QR Code

Increasement of Secondary Metabolites and Antioxidative Activity in Panax ginseng Adventitious Root by Methyl Jasmonate

Methyl jasmonate 처리에 의한 인삼 (Panax ginseng C.A. Meyer) 부정근의 이차대사산물 및 항산화활성 증가

  • Lim Soon (Laboratory of Plant Cell Biotechnology, Korea Research Institute of Bioscience and Biotechnology (KIRBB)) ;
  • Bae Ki-Hwa (Korea Ginseng Institute, Chung-Ang University) ;
  • Shin Cha-Gyun (Korea Ginseng Institute, Chung-Ang University) ;
  • Kim Yoon-Young (Korea Ginseng Institute, Chung-Ang University) ;
  • Kim Yun-Soo (Korea Ginseng Institute, Chung-Ang University)
  • 임순 (한국생명공학연구원 식물세포공학연구실) ;
  • 배기화 (중앙대학교 인삼산업연구소) ;
  • 신차균 (중앙대학교 인삼산업연구소) ;
  • 김윤영 (중앙대학교 인삼산업연구소) ;
  • 김윤수 (중앙대학교 인삼산업연구소)
  • Published : 2005.09.01

Abstract

This study was initiated to investigate the impacts of methyl jasmonate (MeJA) on adventitious root growth of Panax ginseng, the production of secondary metabolites, such as ginsenosides and phenolic compounds, and antioxidative activity. Among various concentrations of MeJA, $100\;{\mu}M$ MeJA increased the ginsenosides accumulation to 26.6 mg/g dry wt, about 8 times higher than the control in ginseng adventitious roots (GAR). In addition, $50\;{\mu}M$ MeJA increased the accumulation of phenolic compounds to 0.38 mg/g dry wt, about 3 times higher than control in GAR. This MeJA treatment was more effective in conditioned medium (CM) which obtained in bioreactor after 40 days of culture than in fresh medium (FM). Treatment of $100\;{\mu}M$ MeJA in CM increased the accumulation of ginsenosides (1.7 times) and phenolic compounds (1.2 times) more than in FM, respectively. Consequently, these high accumulation of ginsenosides and phenolic compounds by MeJA led to increase the antioxidative activities expressed to the DPPH scavenging activity (over $78.3\%$). The DPPH scavenging activity in control was $45.5\%$.

인삼부정근 배양에서 MeJA 처리가 부정근내 진세노사이드와 페놀화합물의 생산에 미치는 영향과 이러한 이차대사 산물의 증가에 따른 인삼부정근의 항산화활성의 효과를 조사하였다. 다양한 농도의 MeJA를 인삼부정근에 처리한 결과, $100\;{\mu}M$ MeJA에서 부정근내 진세노사이드의 생산은 26.6 mg/g dry wt로 대조구보다 약 8배 이상 생산하는 것으로 나타났다. 하지만, MeJA의 처리는 부정근의 생장을 감소시키는 것으로 나타났다. 페놀화합물의 생산 역시 MeJA처리에 의하여 증가되는 경향을 나타냈으며 $50\;{\mu}M$ MeJA에서 0.38 mg/g dry wt로 대조구에 비하여 약 3배 이상 증가한 것으로 나타났다. 이러한 MeJA의 처리효과는 조건배지 (CM)를 이용하는 것이 신선배지 (FM)를 이용하는 것보다 유리한 것으로 나타났다. 배지성분이 결핍된 조건배지에서의 진세노사이드 생산은 신선배지에서 보다 약 1.7배가 증가한 것으로 나타났으며, 페놀화합물 역시 조건배지에서약 1.2배가 증가한 것으로 나타났다. 이러한 MeJA 처리에 의한 진세노사이드와 페놀화합물의 증가는 결과적으로 인삼부정근의 항상화활성을 무처리구인 대조구에 비해서 약 72%이상 증가시키는 것으로 나타났다.

Keywords

References

  1. Ali MB, Yu KW, Hahn EJ, Paek KY (2005) Differential response of anti-oxidants enzymes, lipoxygenase activity, ascorbate content and the production of saponins in tissue cultured root of mountain Panax ginseng C.A. Meyer and Panax quinquefolium L. in bioreactor subjected to methyl jasmonate stress. Plant Sci 169: 83-92 https://doi.org/10.1016/j.plantsci.2005.02.027
  2. Aoyagi H, Kobayashi Y, Yamada K, Yokoyama M, Kusakari K, Tanaka H (2001) Efficient production of saikosaponins in Bupleurum falcatum root fragments combined with signal transducers. Appl Microbiol Biotechnol 57: 482-488 https://doi.org/10.1007/s002530100819
  3. Attele AS, Wu JA, Yuan CS (1999) Ginseng pharmacology. Biochem Pharmacol 58: 1685-1693 https://doi.org/10.1016/S0006-2952(99)00212-9
  4. Cha HS, Park MS, Park KM (2001) Physiological activities of Rubus coreanus Miquel. Kor J. Food Sci Technol 33: 409-415
  5. Famer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87: 7713-7716 https://doi.org/10.1073/pnas.87.19.7713
  6. Garriques S (1854) On panaquilon, a new vegetable substances. Ann Chem Pharm 90: 231 https://doi.org/10.1002/jlac.18540900216
  7. Hahn EJ, Kim YS, Yu KW, Jeong CS, Paek KY (2003) Adventitious root cultures of Panax ginseng C.A. Meyer and ginsenoside production through large-scale bioreactor system. J Plant Biotech 5: 1-6
  8. Hammerschmidt PA, Pratt DA (1978) Phenolic antioxidants of dried soybeans. J Food Sci 43: 556-559 https://doi.org/10.1111/j.1365-2621.1978.tb02353.x
  9. Han BH, Park MH, Han YN (1985) Studies on the antioxidant components of Korean ginseng-(V); The mechanism of antioxidant activity of maltol and phenolic acids. Kor Biochem J 18: 337-340
  10. Jung CH, Seog HM, Choi IW, Choi HD, Cho HY (2005) Effects of wild ginseng (Panax ginseng C.A. Meyer) leaves on lipid peroxidation levels and antioxidant enzyme activities in streptozotocin diabetic rats. J Ethnopharmacol 98: 245-250 https://doi.org/10.1016/j.jep.2004.12.030
  11. Ketchum REB, Gibson DM, Croteau RB, Shuler ML (1999) The kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methyl jasmonate. Biotechnol Bioeng 62: 97-105 https://doi.org/10.1002/(SICI)1097-0290(19990105)62:1<97::AID-BIT11>3.0.CO;2-C
  12. Keum YS, Park KK, Lee JM, Chun KS, Park JH, Lee SK, Kwon H, Surh YJ (2000) Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng. Cancer Lett 150: 41-48 https://doi.org/10.1016/S0304-3835(99)00369-9
  13. Kim YS (2002) Production of ginsenosides through bioreactor culture of adventitious roots in ginseng (Panax ginseng C.A. Meyer). Ph D. thesis. Chungbuk National University, Cheongju
  14. Kim YS, Chakrabarty D, Hahn EJ, Paek KY (2003) Methyl jasmonate increase saponin content in bioreactor culture of ginseng (Panax ginseng C.A. Meyer) adventitious roots. Acta Hort 625: 289-292
  15. Kim YS, Hahn EJ, Murthy HN, Paek KY (2004) Adventitious root growth and ginsenoside accumulation in Panax ginseng cultures as affected by methyl jasmonate. Biotechnol Lett 26: 1619-1622 https://doi.org/10.1007/s10529-004-3183-2
  16. Kwak SS, Kim SK, Lee MS, Jung KH, Park IH, Liu JR (1995) Acidic peroxidases from suspension-cultures of sweet potato. Phytochemi 39: 981-984 https://doi.org/10.1016/0031-9422(95)00098-R
  17. Lu Y, Foo LY (2001) Antioxidant activities of polyphenols from sage (Salvia officialis). Food Chem 75: 197-202 https://doi.org/10.1016/S0308-8146(01)00198-4
  18. Meyer A, Miersch O, Buttner C, Dathe W, Sembdner G (1984) Occurrence of the plant growth regulator jasmonic acid in plants. J Plant Growth Reg 3: 1-8 https://doi.org/10.1007/BF02041987
  19. Mueller MJ, Brodschelm W, Spannagl E, Zenk MH (1993) Signaling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. Proc Natl Acad Sci USA 90: 7490-7494 https://doi.org/10.1073/pnas.90.16.7490
  20. Park KM, Kim YS, Jeong TC, Joe CO, Shin HJ, Lee YH, Nam KY, Park JD (2001) Nitric oxide is involved in the immunomodulating activities of acidic polysaccharides from Panax ginseng. Planta Med 67: 122-126 https://doi.org/10.1055/s-2001-11508
  21. Park SN, Choi SW, Boo YC, Kim CK, Lee TV (1990) Effects of flavonoids of ginseng leaves on erythrocyte membranes against singlet oxygen caused damage. Kor J Ginseng Sci 14: 191-199
  22. Rotshteyn Y, Zito SW (2004) Application of modified in vitro screening procedure for identifying herbals possessing sulfonylurea-like activity. J Ethnopharmacol 93: 337-344 https://doi.org/10.1016/j.jep.2004.04.007
  23. Saija A, Trombetta D, Tomaino A, Cascio RL, Princi P, Uccella N, Bonina F, Castelli F (1998) ‘In vitro’ evaluation of the antioxidant activity and biomembrane interaction of the plant phenols oleuropein and hydroxytyrosol. Int J Pharm 166: 123-133 https://doi.org/10.1016/S0378-5173(98)00018-0
  24. Shibata S (2001) Chemistry and cancer preventing activities of ginsneg saponins and some related triterpenoid compounds. J Kor Med Sci 16: 28-37 https://doi.org/10.3346/jkms.2001.16.S.S28
  25. Shimada K, Fujikawa K, Yahara K, Nakamura T (1992) Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agri Food Chem 40: 945-948 https://doi.org/10.1021/jf00018a005
  26. Takagi K (1974) Pharmacological studies on ginseng. Proceeding of International Ginseng Symposium. The Central Research Institute, Office of Monopoly, Seoul, Korea, pp 119-127
  27. Wang W, Zhong JJ (2002) Manipulation of ginsenoside heterogeneity in cell cultures of Panax notoginseng by addition of jasmonates. J Biosci Bioeng 93: 48-53 https://doi.org/10.1016/S1389-1723(02)80053-6
  28. Wee JJ, Heo JN, Kim MW (1996) Analysis of phenolic components in Korean red ginseng by GC/MS. Kor J Ginseng Sci 20: 284-290
  29. William A, John G, Hendel J (1996) Reversed-phase high-performance liquid chromatographic determination of ginsenosides of Panax quinquefolium. J Chromatogr 775: 11-17
  30. Xie JT, Mehendale SR, Wang A, Han AH, Wu JA, Osinski J, Yuan CS (2004) American ginseng leaf: ginsenoside analysis and hypoglycemic activity. Pharmacol Res 49: 113-117 https://doi.org/10.1016/j.phrs.2003.07.015
  31. Yu KW, Gao W, Hahn EJ, Paek KY (2002) Jasmonic acid improving ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochem Eng J 11: 211-215 https://doi.org/10.1016/S1369-703X(02)00029-3
  32. Yu KW, Hahn EJ, Paek KY (2000) Production of adventitious ginseng roots using bioreactors. Kor J Plant Tiss Cult 27: 309-315
  33. Yukimune Y, Tabata H, Higashi Y, Hara Y (1996) Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nat Biotechnol 14: 1129-1132 https://doi.org/10.1038/nbt0996-1129

Cited by

  1. Effect of elicited by methyl jasmonate on the saponin contents of Codonopsis lanceolata vol.42, pp.3, 2015, https://doi.org/10.5010/JPB.2015.42.3.265