DOI QR코드

DOI QR Code

Pichia pastoris로부터 Toll-like Receptor 9의 세포 내 도메인 단백질의 발현과 순수분리 정제

Expression and Purification of Toll-like Receptor 9 Cytoplasmic Domain in Pichia patoris

  • 이균영 (경상대학교 대학원 응용생명과학부, 식물분자생물학 및 유전자조작연구소, 환경생명과학 국가핵심연구센터) ;
  • 이곤호 (경상대학교 대학원 응용생명과학부, 식물분자생물학 및 유전자조작연구소, 환경생명과학 국가핵심연구센터)
  • Lee Kyun-Young (Division of Applied Life Science, PMBBRC & EB-NCRC, Gyeongsang National University) ;
  • Lee Kon-Ho (Division of Applied Life Science, PMBBRC & EB-NCRC, Gyeongsang National University)
  • 발행 : 2005.12.01

초록

Methylotrophic 효모 Pichia pastoris 발현시스템을 사용하여 인간 TLR9 단백질의 세포내 TIR 도메인을 발현하였다. TIR 단백질이 P. pastoris에서 발현되어 배지 속으로 분비되는 것을 SDS-PAGE로 확인하였고, 발현된 단백질을 western-blot, MALDI-TOF 질량분석으로 동정하였다. 이를 통하여 TIR 딘백질이 P. pastoris에서 안정적으로 발현됨을 알 수 있었다. 그리고 발현된 단백질을 니켈 친화, 양이온교환수지, 겔 투과 크로마토그라피를 사용하여 순수 분리 정제하였다. P. pastoris를 이용한 단백질의 발현과 정제방법은 대장균에서 잘 발현되지 않는 단백질의 발현에 응용될 수 있을 것이다.

Toll-like receptors (TLR) are important components of innate immunity in the defense against pathogens. TLRs recognize pathogen-associated common molecular patterns. TLRs are similar to the receptors involved in defense responses in plants. TLR protein is a type 1 membrane protein, consisting of an extracellular domain containing leucine-rich repeats and a cytoplasmic domain. The cytoplasmic domain delivers ligand recognition signals that result in production of anti-microbial agents. The cytoplasmic domain (amino acid 858-1032) of toll-like receptor 9 has been expressed using methylotrophic yeast Pichia pastoris. The protein expression was confirmed by Western-blot, N-terminal sequencing and MALDl-TOF mass spectrometry. The proteins have been purified by nickel affinity, cation exchange and gel-filtration chromatography.

키워드

참고문헌

  1. Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406: 782-787 https://doi.org/10.1038/35021228
  2. Akira S, Takeda K, Kaisho, T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2: 675-680 https://doi.org/10.1038/90609
  3. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll- like receptor 3 Nature 413: 732-738 https://doi.org/10.1038/35099560
  4. Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD, Klimpel GR, Godowski P, Zychlinsky A (1999) Cell activation and apoptosis by bacterial lipoproteins through toll- like receptor-2. Science 285: 736-739 https://doi.org/10.1126/science.285.5428.736
  5. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  6. Ausubel FM, Brent R, Kingstone RE, Moore DD, Seidman JG, Smith JA, Struhl K (1989) Current protocols in molecular Biology. Greene Publishing Associates and Wiley-Interscience, New York
  7. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methyloptrphic yeast Pichia pastoris. FEMS Microbiol Rev 24: 45-66 https://doi.org/10.1111/j.1574-6976.2000.tb00532.x
  8. Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81: 1991-5 https://doi.org/10.1073/pnas.81.7.1991
  9. Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, Brint E, Dunne A, Gray P, Harte MT (2001) Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413: 78-83 https://doi.org/10.1038/35092578
  10. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll- like receptor 5. Nature 410: 1099-103 https://doi.org/10.1038/35074106
  11. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, and Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408: 740-745 https://doi.org/10.1038/35047123
  12. Higgins DT, Cregg JM in: N.J. Totowa (Ed.), Pichia Protocols, Humana Press, 1998, pp 103
  13. Horng T, Barton GM, Medzhitov R (2001) TIRAP: an adapter molecule in the Toll signaling pathway. Nat Immunol 2: 835-41 https://doi.org/10.1038/ni0901-835
  14. Medzhitov R, Janeway CA, Jr. (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91: 295-298 https://doi.org/10.1016/S0092-8674(00)80412-2
  15. Nurnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plnts and animals: striking imilarities and obvious differences. Immunol. Rev. 198: 249-266 https://doi.org/10.1111/j.0105-2896.2004.0119.x
  16. Rock FL, Hardiman G, Timans JC, Kastelein RA,Bazan JF (1998) A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 95: 588-593 https://doi.org/10.1073/pnas.95.2.588
  17. Sambrook J, Russell DW (2000) Molecular cloning: A laboratory manual, Ed 3, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 1.90-1.92
  18. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Ann Rev Immunol 21: 335 https://doi.org/10.1146/annurev.immunol.21.120601.141126
  19. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. PNAS 76: 4350-4354 https://doi.org/10.1073/pnas.76.9.4350
  20. Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D (1999) Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 163: 1-5
  21. Xu Y, Tao X, Shen B, Horng T, Medshitov R, Manley JL, Tong L (2000) Structural basis for signal transduction by the Toll/interleukin-1 receptor domains, Science 408: 111-115