An analytical modeling for the two-dimensional field effect of a short channel GaAs MESFET and SOI-structured Si JFET

단채널 GaAs MESFET 및 SOI 구조의 Si JFET의 2차원 전계효과에 대한 해석적 모델에 대한 연구

  • Choi Jin-Wook (Dept. of Electrical and Electronic Eng., Hongik University) ;
  • Ji Soon-Koo (Dept. of Electrical and Electronic Eng., Hongik University) ;
  • Choi Soo-Hong (Dept. of Electrical and Electronic Eng., Hongik University) ;
  • Suh Chung-Ha (Dept. of Electrical and Electronic Eng., Hongik University)
  • 최진욱 (홍익대학교 전자전기공학부) ;
  • 지순구 (홍익대학교 전자전기공학부) ;
  • 최수홍 (홍익대학교 전자전기공학부) ;
  • 서정하 (홍익대학교 전자전기공학부)
  • Published : 2005.01.01

Abstract

In this paper, it is attempted to provide a unified explanation for typical short channel GaAs MESFET’s and SOI-structured Si JFET's behaviors such as: i) drain voltage-induced threshold voltage roll-off, ii) finite output ac resistance beyond the saturation, and iii) weak dependence of the drain saturation current on the channel length. Replacing the conventional GCA with a new assumption that is suggested in order to include the longitudinal field variation, and taking into account the channel current continuity and the field-dependent mobility, we can derive the two-dimensional potential in both depletion region and undepleted conducting channel. Obtained expressions for the threshold voltage and the drain current will be considerably accurate over the entire operating region. Moreover, in comparison with the conventional channel length shortening models, our model seems to be more reasonable in explaining the Early effect.

본 논문에서는 단 채널 GaAs MESFET과 SOI-구조의 Si JFET가 갖는 전형적인 특성: i) 드레인 전압 인가에 의한 문턱전압 roll-off, ii) 포화영역에서의 유한한 ac 출력저항, iii) 채널길이에 대한 드레인 포화전류의 의존성 약화, 등을 통합적으로 기술할 수 있는 해석적 모델을 제안하였다. 채널 방향의 전계 변화를 포함하는 새로운 형태의 가정을 기존의 GCA와 대체하고, 채널의 전류 연속성과 전계-의존 이동도를 고려하여, 공핍영역과 전도 채널에서 2차원 전위분포 식을 도출해 내었다. 이 결과, 문턱전압, 드레인 전류의 표현 식들이 동작전압전 구간의 영역에 걸쳐 비교적 정확하게 도출되었다. 또한 본 모델은 기존의 채널 shortening 모델에 비해 Early 효과에 대한 보다 더 적절한 설명을 제공하고 있음을 보이고 있다.

Keywords

References

  1. P. C. Choa, P. M. Smith, S. Wanuga, W. H. Perkins, and E. D. Wolf, 'Channel length effects in quarter micrometer gate-length GaAs MESFET's,' IEEE Electron Device Lett., vol. EDL-8, pp.440-442, 1987
  2. P. Pouvil, J. Gautier, and D. Pasquet, 'A New analytical model for the GaAs MESFET in the saturation region,' IEEE Trans. Electron Devices, vol. 35, no.8, pp.1215-1222, 1988 https://doi.org/10.1109/16.2540
  3. C. H. Chen and D. K. Arch, 'The influence of electric field and mobility profile on GaAs MESFET characteristics,' IEEE Trans. Electron Devices, vol. 36, no.11, pp.2405-2416, 1989 https://doi.org/10.1109/16.43660
  4. C. S. Chang and D.-Y. S. Day, 'Analytical theory for current-voltage characteristic and field distribution of GaAs MESFET's,' IEEE Trans. Electron Devices, vol. 36, no.2, pp.269-280, 1989 https://doi.org/10.1109/16.19926
  5. P. C. Choa, P. M. Smith, S. Wanuga, W. H. Perkins, and E. D. Wolf, 'Channel length effects in quarter micrometer gate-length GaAs MESFET's,' IEEE Electron Device Lett., vol. EDL-8, pp.440-442, 1987
  6. H. L. Grubin, 'Large-signal numerical simulation of field-effect transistors,' presented at the Sixth Biennial Conf. on Active Microwave Semiconductor Devices and Circuits, Cornell Univ., Ithaca. NY, Aug. pp.16-19, 1977
  7. T. Wada and J. Frey, 'Physical basis of short-channel MESFET operation,' IEEE J. Solid-State Circuits, vol. SC-14, no.2, pp.398-412, Apr, 1979 https://doi.org/10.1109/JSSC.1979.1051191
  8. V. K. De and J. D. Meindl, 'Three-region analytical models for MESFET's in low-voltage digital circuits.' IEEE J. Solid-State Circuits, vol. 26, pp.850-858, June. 1991 https://doi.org/10.1109/4.78274
  9. C.-S. Chang, D.-Y. S. Day, and S. Chan, 'An analytical two-dimensional simulation for the GaAs MESFET drain-induced barrier lowering: a short-channel effect,' IEEE Trans. Electron Devices, vol. ED-37, no.5, pp.1182-118, 1990 https://doi.org/10.1109/16.108177
  10. C. S. Chang and H. R. Fetterman, 'Electron drift velocity IEEE Trans. Electron Devices, vol. ED-37, no.5, pp.1182-118, 1990
  11. A. B. Grebene and S. K. Ghandhi, 'General theory for pinched operation of the junction-gate FET,' Solid-State Electron., vol. 12, pp.573-589, 1969. versus electric field in GaAs,' Solid-State Electron., vol. 29, pp.1295-1296, 1986 https://doi.org/10.1016/0038-1101(86)90136-X
  12. W. R. Curitice and M. Ettenberg, 'A nonlinear GaAs FET model for use in the design of output circuit for power amplifiers,' IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp.1383-1394, Dec. 1985 https://doi.org/10.1109/TMTT.1985.1133229
  13. H. Statz, p. Newman, I. W. Smith, R. A. Pucel, and H, A. Haus, 'GaAs FET device and circuit simulation in SPICE,' IEEE Trans. Electron Devices, vol. ED-34, pp.160-169, Feb. 1987 https://doi.org/10.1109/T-ED.1987.22902
  14. A. J. McCamant, G. D. McCormack. and D. H. Smith, 'An improved GaAs MESFET model for SPICE,' IEEE Trans. Microwave Theory Tech., vol. 38, pp.822-824, June. 1990 https://doi.org/10.1109/22.130988
  15. J. Conger. M. S. Shur, and A. Peezalski, 'Power law GaAs MESFET model,' IEEE Trans. Electron Devices, vol. 39, pp. 2415-2417, Oct. 1992 https://doi.org/10.1109/16.158819
  16. S. Selberherr. Analysis and Simulation of Semiconductor Devices, Springer-Verlag, 1984