References
- W. Pedrycz and J. F. Peters, Computational Intelligence and Software Engineering, World Scientific, Singapore, 1998
- K. S. Narendra and K. Parthasarathy, 'Gradient methods for the optimization of dynamical systems containing neural networks,' IEEE Transactions on Neural Networks, vol. 2, pp. 252-262, 1991 https://doi.org/10.1109/72.80336
- G. Kang and M. Sugeno, 'Fuzzy modeling,' Transactions of the Society of Instrument and Control Engineers, vol. 23, no. 6, pp. 106-108, 1987
- S. K. Oh and W. Pedrycz, 'Fuzzy identification by means of auto-tuning algorithm and its application to nonlinear systems,' Fuzzy Sets and Systems, vol. 115, no. 2, pp. 205-230, 2000 https://doi.org/10.1016/S0165-0114(98)00174-2
- B. J. Park, W. Pedrycz and S. K. Oh, 'Identification of fuzzy models with the Aid of evolutionary data granulation,' lEE Proc. -Control theory and application, vol. 148, Issue 5, pp. 406-418, 2001 https://doi.org/10.1049/ip-cta:20010677
- S. K. Oh, W. Pedrycz and B. J. Park, 'Hybrid identification of fuzzy rule-based models,' International Journal of Intelligent Systems, vol. 17, Issue 1, pp. 77-103, 2002 https://doi.org/10.1002/int.1004
- Z. Michalewicz, Genetic Algorithms + Data Structure = Evolution Programs, Springer- Verlag, 1992
- S. I. Horikawa, T. Furuhashi and Y. Uchigawa, 'On fuzzy modeling using fuzzy neural networks with the back propagation algorithm,' IEEE Transactions on Neural Networks, vol. 3, no. 5, pp. 801-806, 1992 https://doi.org/10.1109/72.159069
- B. J. Park, W. Pedrycz and S. K. Oh, 'Fuzzy polynomial neural networks: hybrid architectures of fuzzy modeling," IEEE Trans. on Fuzzy Systems, vol. 10, Issue 5, pp. 607-621, 2002 https://doi.org/10.1109/TFUZZ.2002.803495
- S. K. Oh, W. Pedrycz and B. J. Park, 'Self-organizing neurofuzzy networks based on evolutionary fuzzy granulation,' IEEE Trans. on systems, Man and Cybernetics-part A, vol. 33, no. 2, pp. 271-277, 2003 https://doi.org/10.1109/TSMCA.2002.806482
- S. K. Oh, W. Pedrycz and B. J. Park, 'Polynomial neural networks architecture: analysis and design,' Computers and Electrical Engineering, vol. 29, Issue 6, pp. 653-725, 2003 https://doi.org/10.1016/S0045-7906(02)00045-9
- A. G. Ivakhnenko, 'The group method of data handling; a rival of method of stochastic approximation,' Soviet Automatic Control, vol. 1, no. 3, pp. 43-55, 1968
- D. E. Box and G. M. Jenkins, Time Series Analysis, Forecasting and Control, California: Holden Day, 1976
- H. S. Park and S. K. Oh, 'Multi-FNN identification based on HCM clustering and evolutionary fuzzy granulation,' International Journal of Control, Automation and Systems, vol. 1, no. 2, pp. 194-202, 2003
- E. Kim, H. Lee, M. Park and M. Park, 'A simply identified sugeno-type fuzzy model via double clustering,' Information Sciences, vol 110, pp. 25-39. 1998 https://doi.org/10.1016/S0020-0255(97)10083-4
- Y. Lin, G. A. Cunningham III, 'A new approach to fuzzy-neural modeling,' IEEE Transaction on Fuzzy Systems, vol. 3, no. 2, pp. 190-197, 1997 https://doi.org/10.1109/91.388173
- S. K. Oh, W. Pedrycz and H. S. Park, 'Hybrid identification in fuzzy-neural networks,' Fuzzy Sets and Systems, vol. 138, pp. 399-426, 2003 https://doi.org/10.1016/S0165-0114(02)00441-4
- 오성권, 프로그래밍에 의한 컴퓨터지능(퍼지, 신경회로망 및 진화알고리즘을 중심으로), 내하출판사, 2002
- 박병준, 오성권, 장성환, '퍼지뉴럴 네트워크와 자기구성 네트워크에 기초한 적응 퍼지 다항식 뉴럴네트워크 구조의 설계', 제어자동화시스템공학 논문지, 8권, 2호, pp. 126-135, 2002 https://doi.org/10.5302/J.ICROS.2002.8.2.126
- 박병준, 오성권, '고급 뉴로퍼지 다항식 네트워크의 해석과 설계', 대한전자공학회 논문지, 39권, CI편, 3호, pp. 18-31, 2002
- 管野道夫(譯:박민용, 최항식), 퍼지제어 시스템, pp. 143-158, 대영사, 1990
- 안태천, 오성권, '발전소의 대기오염물질 배출패턴 모델정립', 기초전력공학 공동연구소, 1997
- 박병준, 오성권, 안태천, 김현기, '유전자 알고리즘과 하중값을 이용한 퍼지시스템의 최적화', 대한전기학회 논문지, 48A권, 6호, pp. 789-799, 1999
- 박호성, 오성권, 'HCM 클러스터링에 의한 다중 퍼지-뉴럴 네트워크 동정과 유전자 알고리즘을 이용한 이의 최적화', 한국 퍼지 및 지능 시스템 학회 논문지, 10권, 5호, pp. 487-496, 2000