DOI QR코드

DOI QR Code

Genetically Optimized Rule-based Fuzzy Polynomial Neural Networks

진화론적 최적 규칙베이스 퍼지다항식 뉴럴네트워크

  • 박병준 (원광대 전기전자 및 정보공학부) ;
  • 김현기 (수원대 전기공학과) ;
  • 오성권 (원광대 전기전자 및 정보공학부)
  • Published : 2005.02.01

Abstract

In this paper, a new architecture and comprehensive design methodology of genetically optimized Rule-based Fuzzy Polynomial Neural Networks(gRFPNN) are introduced and a series of numeric experiments are carried out. The architecture of the resulting gRFPNN results from asynergistic usage of the hybrid system generated by combining rule-based Fuzzy Neural Networks(FNN) with polynomial neural networks (PNN). FNN contributes to the formation of the premise part of the overall rule-based structure of the gRFPNN. The consequence part of the gRFPNN is designed using PNNs. At the premise part of the gRFPNN, FNN exploits fuzzy set based approach designed by using space partitioning in terms of individual variables and comes in two fuzzy inference forms: simplified and linear. As the consequence part of the gRFPNN, the development of the genetically optimized PNN dwells on two general optimization mechanism: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the gRFPNN, the models are experimented with the use of several representative numerical examples. A comparative analysis shows that the proposed gRFPNN are models with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

Keywords

References

  1. W. Pedrycz and J. F. Peters, Computational Intelligence and Software Engineering, World Scientific, Singapore, 1998
  2. K. S. Narendra and K. Parthasarathy, 'Gradient methods for the optimization of dynamical systems containing neural networks,' IEEE Transactions on Neural Networks, vol. 2, pp. 252-262, 1991 https://doi.org/10.1109/72.80336
  3. G. Kang and M. Sugeno, 'Fuzzy modeling,' Transactions of the Society of Instrument and Control Engineers, vol. 23, no. 6, pp. 106-108, 1987
  4. S. K. Oh and W. Pedrycz, 'Fuzzy identification by means of auto-tuning algorithm and its application to nonlinear systems,' Fuzzy Sets and Systems, vol. 115, no. 2, pp. 205-230, 2000 https://doi.org/10.1016/S0165-0114(98)00174-2
  5. B. J. Park, W. Pedrycz and S. K. Oh, 'Identification of fuzzy models with the Aid of evolutionary data granulation,' lEE Proc. -Control theory and application, vol. 148, Issue 5, pp. 406-418, 2001 https://doi.org/10.1049/ip-cta:20010677
  6. S. K. Oh, W. Pedrycz and B. J. Park, 'Hybrid identification of fuzzy rule-based models,' International Journal of Intelligent Systems, vol. 17, Issue 1, pp. 77-103, 2002 https://doi.org/10.1002/int.1004
  7. Z. Michalewicz, Genetic Algorithms + Data Structure = Evolution Programs, Springer- Verlag, 1992
  8. S. I. Horikawa, T. Furuhashi and Y. Uchigawa, 'On fuzzy modeling using fuzzy neural networks with the back propagation algorithm,' IEEE Transactions on Neural Networks, vol. 3, no. 5, pp. 801-806, 1992 https://doi.org/10.1109/72.159069
  9. B. J. Park, W. Pedrycz and S. K. Oh, 'Fuzzy polynomial neural networks: hybrid architectures of fuzzy modeling," IEEE Trans. on Fuzzy Systems, vol. 10, Issue 5, pp. 607-621, 2002 https://doi.org/10.1109/TFUZZ.2002.803495
  10. S. K. Oh, W. Pedrycz and B. J. Park, 'Self-organizing neurofuzzy networks based on evolutionary fuzzy granulation,' IEEE Trans. on systems, Man and Cybernetics-part A, vol. 33, no. 2, pp. 271-277, 2003 https://doi.org/10.1109/TSMCA.2002.806482
  11. S. K. Oh, W. Pedrycz and B. J. Park, 'Polynomial neural networks architecture: analysis and design,' Computers and Electrical Engineering, vol. 29, Issue 6, pp. 653-725, 2003 https://doi.org/10.1016/S0045-7906(02)00045-9
  12. A. G. Ivakhnenko, 'The group method of data handling; a rival of method of stochastic approximation,' Soviet Automatic Control, vol. 1, no. 3, pp. 43-55, 1968
  13. D. E. Box and G. M. Jenkins, Time Series Analysis, Forecasting and Control, California: Holden Day, 1976
  14. H. S. Park and S. K. Oh, 'Multi-FNN identification based on HCM clustering and evolutionary fuzzy granulation,' International Journal of Control, Automation and Systems, vol. 1, no. 2, pp. 194-202, 2003
  15. E. Kim, H. Lee, M. Park and M. Park, 'A simply identified sugeno-type fuzzy model via double clustering,' Information Sciences, vol 110, pp. 25-39. 1998 https://doi.org/10.1016/S0020-0255(97)10083-4
  16. Y. Lin, G. A. Cunningham III, 'A new approach to fuzzy-neural modeling,' IEEE Transaction on Fuzzy Systems, vol. 3, no. 2, pp. 190-197, 1997 https://doi.org/10.1109/91.388173
  17. S. K. Oh, W. Pedrycz and H. S. Park, 'Hybrid identification in fuzzy-neural networks,' Fuzzy Sets and Systems, vol. 138, pp. 399-426, 2003 https://doi.org/10.1016/S0165-0114(02)00441-4
  18. 오성권, 프로그래밍에 의한 컴퓨터지능(퍼지, 신경회로망 및 진화알고리즘을 중심으로), 내하출판사, 2002
  19. 박병준, 오성권, 장성환, '퍼지뉴럴 네트워크와 자기구성 네트워크에 기초한 적응 퍼지 다항식 뉴럴네트워크 구조의 설계', 제어자동화시스템공학 논문지, 8권, 2호, pp. 126-135, 2002 https://doi.org/10.5302/J.ICROS.2002.8.2.126
  20. 박병준, 오성권, '고급 뉴로퍼지 다항식 네트워크의 해석과 설계', 대한전자공학회 논문지, 39권, CI편, 3호, pp. 18-31, 2002
  21. 管野道夫(譯:박민용, 최항식), 퍼지제어 시스템, pp. 143-158, 대영사, 1990
  22. 안태천, 오성권, '발전소의 대기오염물질 배출패턴 모델정립', 기초전력공학 공동연구소, 1997
  23. 박병준, 오성권, 안태천, 김현기, '유전자 알고리즘과 하중값을 이용한 퍼지시스템의 최적화', 대한전기학회 논문지, 48A권, 6호, pp. 789-799, 1999
  24. 박호성, 오성권, 'HCM 클러스터링에 의한 다중 퍼지-뉴럴 네트워크 동정과 유전자 알고리즘을 이용한 이의 최적화', 한국 퍼지 및 지능 시스템 학회 논문지, 10권, 5호, pp. 487-496, 2000