References
- J. C. Doyle, 'Analysis of feedback systems with structured uncertainties', lEE Proc. Part D, vol. 129, no. 6, pp. 242-250, 1982
-
J. Doyle, A. Packard and K. Zhou, 'Review of LFTs, LMIs, and
${\mu}$ ', Proc. of the 30th IEEE Control and Decision Conference, pp. 1227-1232, 1991 https://doi.org/10.1109/CDC.1991.261572 - V. L. Kharitonov, 'Asymptotic stability of an equilibrium position of a family of systems of linear differential equations', Differntial'nye Uraveviya, vol. 14, no. 11, pp. 1483-1485, 1987
- G. Zames, 'Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses', IEEE Trans. on Automatic Control, vol. 26, no. 2, pp. 301-320, 1981 https://doi.org/10.1109/TAC.1981.1102603
-
K. Glover, J. C. Doyle, 'State-space fomulate for all stabilizing controllers that satisfy an
$H_{\infty}$ -norm bound and relations to risk sensitivity', System and Control Letters, vol. 11, pp. 167-172, 1988 https://doi.org/10.1016/0167-6911(88)90055-2 - C. H. Houpis, Quantitative Feedback Theory(QFT) Technique, CRC Press, pp. 701-717, 1996
- B. R. Barmish, C. V. Hollot, F. Kraus, and R. Tempo, 'Extreme point results for robust stabilization of interval plants with first order compensators', IEEE Trans. on Automatic Control, vol. 37, pp. 707-714, 1992 https://doi.org/10.1109/9.256326
- A. C. Bartlett, C. V. Hollot, and L. Huang, 'Root locations of an entire polytope of polynomials: it suffices to check the edges', Math. Control & Signals Sys., vol 1, pp. 61-71, 1988 https://doi.org/10.1007/BF02551236
- S. P. Bhattacharyya et al 2, Robust Control: The Parametric Approach, Prentice-Hall, 1995
- T. E. Djaferis, Robust Control Design: A Polynomial Approach, Kluwer Academic Pub., Boston, 1995
- J. Ackerman, Robust Control: Systems with Uncertain Physical Parameters, Springer-Verlag, New York, 1993
- M. Fu, 'Computing the frequency response of linear systems with parametric perturbations', System and Control Letters, vol. 15, pp. 45-52, 1990 https://doi.org/10.1016/0167-6911(90)90043-T
- H. H. Rosenbrock, State-Space and Multivariable Theory, London : U. K. Nelson, 1970
- W. K. Ho and W. Xu, 'Multivariable PID controller design based on the direct nyquist array method', Proc. of the American Control Con. Pennsylvania, pp. 3524-3528, 1998 https://doi.org/10.1109/ACC.1998.703262
- W. L. Luyben, 'Getting more information from relay-feedback tests'. Ind. Eng. Chem. Res, vol. 40, pp. 4439-4402, 2001 https://doi.org/10.1021/ie010142hS0888-5885(01)00142-7
- C. T. Baab, J. C. Cockburn, H. A. Latchman & O. D. Crisalle, 'Extension of the nyquist robust margin to systems with nonconvex value Sets', AACC, pp. 1414-1419, June, 2001 https://doi.org/10.1109/ACC.2001.945922
- M. Araki and O. I. Nwokah, 'Bounds for closed-loop transfer function of multivariable systems', IEEE Trans. on Automatic Control, vol. 20, pp. 666-670, 1975 https://doi.org/10.1109/TAC.1975.1101051
- K. Zhou, J. C. Doyle, Essentials of Robust Control, Prentice-Hall, New Jersey, 1998
- W. K. Ho, O. P. Gn, E. B. Tay, & E. E. Ang, 'Performance and gain and phase marins of well-known PID tuning formulas', IEEE Trans. on Control systems tech., vol. 4, pp. 473-477, 1996 https://doi.org/10.1109/87.508897
- K. Etfhymios and M. Neil, 'Extreme point solution to diagonal dominance problem and stability analysis of uncertain systems.', Proc. of the American Control Con., pp. 3936-3940, 1997 https://doi.org/10.1109/ACC.1997.609628
- H. A. Latchman, O. D. Crisalle and V. R. Basker, 'The nyquist robust stability margin-A new metric for robust stability', International J. of Robust and Nonlinear Control, vol. 7, pp. 211-226, 1997 https://doi.org/10.1002/(SICI)1099-1239(199702)7:2<211::AID-RNC299>3.0.CO;2-8
- 변황우, 양해원, '불확실한 Affine TFM(Transfer Function Matrix) 시스템의 강인한 다중 루프 제어기 설계', 대한전기학회논문지, 제54권, 제1호, pp.17-25, 1. 2005