DOI QR코드

DOI QR Code

Controller Design and Stability Analysis of Affine System with Dead-Time

불감시간을 갖는 Affine 시스템의 안정도 해석과 제어기 설계

  • 양해원 (한양대학교 전자컴퓨터공학부) ;
  • 변황우 (한양대학교 전기공학과)
  • Published : 2005.02.01

Abstract

The Nyquist robust stability margin is proposed as a measure of robust stability for systems with Affine TFM(Transfer Function Matrix) parametric uncertainty. The parametric uncertainty is modeled through a Affine TFM MIMO (Multi-Input Multi-Output) description with dead-time, and the unstructured uncertainty through a bounded perturbation of Affine polynomials. Gershgorin's theorem and concepts of diagonal dominance and GB(Gershgorin Bands) are extended to include model uncertainty. Multiloop PI/PID controllers can be tuned by using a modified version of the Ziegler-Nichols (ZN) relations. Consequently, this paper provides sufficient conditions for the robustness of Affine TFM MIMO uncertain systems with dead-time based on Rosenbrock's DNA. Simulation examples show the performance and efficiency of the proposed multiloop design method for Affine uncertain systems with dead-time.

Keywords

References

  1. J. C. Doyle, 'Analysis of feedback systems with structured uncertainties', lEE Proc. Part D, vol. 129, no. 6, pp. 242-250, 1982
  2. J. Doyle, A. Packard and K. Zhou, 'Review of LFTs, LMIs, and ${\mu}$', Proc. of the 30th IEEE Control and Decision Conference, pp. 1227-1232, 1991 https://doi.org/10.1109/CDC.1991.261572
  3. V. L. Kharitonov, 'Asymptotic stability of an equilibrium position of a family of systems of linear differential equations', Differntial'nye Uraveviya, vol. 14, no. 11, pp. 1483-1485, 1987
  4. G. Zames, 'Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses', IEEE Trans. on Automatic Control, vol. 26, no. 2, pp. 301-320, 1981 https://doi.org/10.1109/TAC.1981.1102603
  5. K. Glover, J. C. Doyle, 'State-space fomulate for all stabilizing controllers that satisfy an $H_{\infty}$-norm bound and relations to risk sensitivity', System and Control Letters, vol. 11, pp. 167-172, 1988 https://doi.org/10.1016/0167-6911(88)90055-2
  6. C. H. Houpis, Quantitative Feedback Theory(QFT) Technique, CRC Press, pp. 701-717, 1996
  7. B. R. Barmish, C. V. Hollot, F. Kraus, and R. Tempo, 'Extreme point results for robust stabilization of interval plants with first order compensators', IEEE Trans. on Automatic Control, vol. 37, pp. 707-714, 1992 https://doi.org/10.1109/9.256326
  8. A. C. Bartlett, C. V. Hollot, and L. Huang, 'Root locations of an entire polytope of polynomials: it suffices to check the edges', Math. Control & Signals Sys., vol 1, pp. 61-71, 1988 https://doi.org/10.1007/BF02551236
  9. S. P. Bhattacharyya et al 2, Robust Control: The Parametric Approach, Prentice-Hall, 1995
  10. T. E. Djaferis, Robust Control Design: A Polynomial Approach, Kluwer Academic Pub., Boston, 1995
  11. J. Ackerman, Robust Control: Systems with Uncertain Physical Parameters, Springer-Verlag, New York, 1993
  12. M. Fu, 'Computing the frequency response of linear systems with parametric perturbations', System and Control Letters, vol. 15, pp. 45-52, 1990 https://doi.org/10.1016/0167-6911(90)90043-T
  13. H. H. Rosenbrock, State-Space and Multivariable Theory, London : U. K. Nelson, 1970
  14. W. K. Ho and W. Xu, 'Multivariable PID controller design based on the direct nyquist array method', Proc. of the American Control Con. Pennsylvania, pp. 3524-3528, 1998 https://doi.org/10.1109/ACC.1998.703262
  15. W. L. Luyben, 'Getting more information from relay-feedback tests'. Ind. Eng. Chem. Res, vol. 40, pp. 4439-4402, 2001 https://doi.org/10.1021/ie010142hS0888-5885(01)00142-7
  16. C. T. Baab, J. C. Cockburn, H. A. Latchman & O. D. Crisalle, 'Extension of the nyquist robust margin to systems with nonconvex value Sets', AACC, pp. 1414-1419, June, 2001 https://doi.org/10.1109/ACC.2001.945922
  17. M. Araki and O. I. Nwokah, 'Bounds for closed-loop transfer function of multivariable systems', IEEE Trans. on Automatic Control, vol. 20, pp. 666-670, 1975 https://doi.org/10.1109/TAC.1975.1101051
  18. K. Zhou, J. C. Doyle, Essentials of Robust Control, Prentice-Hall, New Jersey, 1998
  19. W. K. Ho, O. P. Gn, E. B. Tay, & E. E. Ang, 'Performance and gain and phase marins of well-known PID tuning formulas', IEEE Trans. on Control systems tech., vol. 4, pp. 473-477, 1996 https://doi.org/10.1109/87.508897
  20. K. Etfhymios and M. Neil, 'Extreme point solution to diagonal dominance problem and stability analysis of uncertain systems.', Proc. of the American Control Con., pp. 3936-3940, 1997 https://doi.org/10.1109/ACC.1997.609628
  21. H. A. Latchman, O. D. Crisalle and V. R. Basker, 'The nyquist robust stability margin-A new metric for robust stability', International J. of Robust and Nonlinear Control, vol. 7, pp. 211-226, 1997 https://doi.org/10.1002/(SICI)1099-1239(199702)7:2<211::AID-RNC299>3.0.CO;2-8
  22. 변황우, 양해원, '불확실한 Affine TFM(Transfer Function Matrix) 시스템의 강인한 다중 루프 제어기 설계', 대한전기학회논문지, 제54권, 제1호, pp.17-25, 1. 2005