Fuzzy Topology On Fuzzy Sets: Fuzzy γ-Continuity and Fuzzy γ- Retracts

I. M. Hanafy, F. S. Mahmoud and M. M. Khalaf.

Department of Mathematics, Faculty of Education, Suez Canal University, El-Arish, Egypt.

Department of Mathematics, Faculty of Science (82524), Sohag-Egypt.

Abstract

The aim of this paper is to introduce fuzzy γ -continuity and fuzzy γ -retracts in a fuzzy topology on fuzzy sets and establish some of their properties. Also, the relations between these new concepts are discussed.

Key words: Fuzzy topology, fuzzy γ -continuity, fuzzy γ -retracts, fuzzy proper function.

1. Introduction and Preliminaries

Chakrabarty and Ahsanullah [2] introduced the concept of a fuzzy topology on a fuzzy set and defined the category FUZZ-TOP where the objects are fuzzy topological spaces γ and the morphisms are fuzzy-continuous proper functions. In [8,11] the concepts of fuzzy retract and fuzzy neighborhood retract has been introduced. Also, the concept of a fuzzy retract in a fuzzy topology on fuzzy sets has been introduced in 2003 [9]. Hanafy in [6] introduced the concepts of fuzzy γ -open (γ -closed) sets and fuzzy γ -continuity. In the present paper, we introduce and study the concepts of fuzzy γ -open(γ -closed) sets and fuzzy γ -continuity in a fuzzy topology on fuzzy sets. Also, this paper is devoted to introduce various fuzzy retracts in a fuzzy topology on fuzzy sets and establish some of their properties. A comparison between these new concepts is of interest.

Throughout this paper, I will denote the closed unit interval, let X be a non-empty set. A fuzzy set of X is a function with domain X and values in I, that is, an element of I^X . A fuzzy point x_r is a fuzzy set whose support is the point x and its value r, $0 < r \le 1$. In this paper, we will shorten the word fuzzy as F [7]. The family of all F-points of λ will be denoted by Pt(λ)

Let $\lambda \in I^{\times}$, $A_{\lambda} = \{\zeta \in I^{\times} : \zeta \leq \lambda\}$ and $B_{\mu} = \{\eta \in I^{\times} : \eta \leq \mu\}$. Then, $\forall \lambda \in I^{\times}$ A.

is an F-lattice (completely distributive lattice) which has an order-reversing involution $:A_{\lambda} \to A_{\lambda}$ [7].

If $\rho \in A_{\lambda}$, the complement of ρ referred to λ , denoted by ρ_{λ} is defined by $\rho_{\lambda}(x) = \lambda(x) - \rho(x), \forall x \in X$ and ρ is said to be maximal if $\forall x \in X, \rho(x) \neq 0 \Rightarrow \rho(x) = \lambda(x)$ [3].

An F-subset f of $X \times Y$ is said to be an F-proper function from $\forall \lambda (\in I^x)$ to $\forall \mu (\in I^y)$ if

- (i) $f(x, y) \le \lambda(x) \land \mu(y)$, $\forall (x, y) \in X \times Y$.
- (ii) $\forall x \in X, \exists y_0 \in Y \text{ such that } f(x, y_0) = \lambda(x) \text{ and } f(x, y) = 0 \text{ if } y \neq y_0$.

Let $f: \lambda \to \mu$ be an F-proper function from λ to μ Define(adopting Rodabaugh's symbols [12])

- (i) $f^{\rightarrow}(\rho)(y) = \bigvee \{f(x,y) \land \rho(x) : x \in X\}, \forall \rho \in A_{\lambda}, \forall y \in Y\}$
- (ii) $f^{\rightarrow}(\sigma)(y) = \bigvee \{f(x, y) \land \sigma(x) : x \in X\}, \forall \sigma \in B_u, \forall x \in X [5].$

Let $\rho \in A_{\lambda}$. Then $f | \rho$ defined by $(f | \rho)(x, y) = f(x, y)$ $\wedge \rho(x) \forall (x, y) \in X \times Y$, is said to be the restriction of f to ρ

An F-proper function Let $f: \lambda \to \mu$ is said to be

- (i) injective if $f(x_1, y) = \lambda(x_1)(\neq 0)$, $f(x_2, y) = \lambda(x_2)(\neq 0) \Rightarrow x_1 = x_2 \forall x_1 x_2 \in X$, $y \in Y$,
- (ii) surjective if $\forall y \in Y$ with $\mu(y) \neq 0, \exists x \in X$ such that $f(x, y) = \lambda(x)$,
 - (iii) bijective if f is both injective and surjective.

The F-proper function $id_{\lambda}: \lambda \to \lambda$ defined by $id_{\lambda}(x, y) = \lambda(x)$ or 0 accordingly as x = y or $y \neq x$ is said to be the identity F-proper function on λ [3].

If $f: \lambda \to \mu$ and $g: \mu \to \nu (\nu \in I^Z)$ are F-proper functions, then the F-proper function $gf: \lambda \to \nu$ is defined by

$$gf(x,z) = \begin{cases} \lambda(x) & \text{if } \exists y \in Y \text{ such that } f(x,y) = \lambda(x), & g(y,z) = \mu(y), \\ 0 & \text{otherwise.} \end{cases}$$

or
$$gf(x,z) = \bigvee_{x \in Y} f(x,y) \wedge g(y,z)$$
.

A collection δ of F-subsets of λ i.e., $\delta \subset A_{\lambda}$ is said to be an F-topology on λ if

- (i) $0, \lambda \in \delta$,
- (ii) $\rho_j \in \delta \forall j \in J \Rightarrow \vee_{j \in J} \rho_j \in \delta$,
- (iii) $\rho, \sigma \in \delta \Rightarrow \rho \land \sigma \in \delta$.
- (λ,δ) is said to be an F-topological space (briefly , F-ts). The members of δ are said to be F-open (F-o) sets of λ We denote δ the family of F-closed (F-c) sets of λ , that is, $\rho \in \delta$ iff $\lambda \rho$. If $\rho \in A_{\lambda}$, then $\delta_{\rho} = \{\rho \land \zeta : \zeta \in \delta\}$ is an fuzzy topology on ρ and (ρ,δ_{ρ}) is called a subspace of (λ,δ) [3].

Let (λ, δ) be an F-ts and $\rho \in A_{\lambda}$. Then the interior (closure) of ρ is defined by

- (i) int $\rho = \bigvee \{\zeta : \zeta \in \delta, \zeta \leq \rho\}$ [12].
- (ii) $cl \rho = \land \{\eta : \eta \in \delta', \rho \le \eta\}$ [2].

Let $f:(\lambda,\delta) \to (\mu,\delta^*)$ be an F-proper function from an F-ts (λ,δ) into an F-ts (μ,δ^*) . Then f is called F-continuous if $f^+(\sigma) \in \delta, \forall \sigma \in \delta^+)$ [3].

The graph function $g: \lambda \to \lambda \times \mu$ of f is defined by : g(z,(x,y)) = f(x,y) if z = x and g(z,(x,y)) = 0 if $z \neq x$ $\forall z \in X, \forall (x,y) \in X \times Y$ [5].

If $f_i:\lambda_i\to\mu_i(i=1,2)$ are two F-proper functions, then the function $f_1\times f_2:\lambda_1\times\lambda_2\to\mu_1\times\mu_2$ defined by : $(f_1\times f_2)$ $((x_1,x_2),(y_1,y_2)=f_1(x_1,y_1)\wedge f_2(x_2,y_2)\forall (x_1,x_2)\in X_1\times X_2, \forall (y_1,y_2)\in Y_1\times Y_2$, is called the F-product function of f_1 and f_2 . One can easily prove that $f_1\times f_2$ is an F-proper function [5].

Let (λ, δ) and (μ, δ°) be two F-topological spaces. The collection $\mathfrak{R} = \{\zeta \times \eta : \zeta \in \delta, \eta \in \delta^\circ\}$ forms an open base of an F-topology in $\lambda \times \mu$. The F-topology in $\lambda \times \mu$ induced by \mathfrak{R} is called the product F-topology of δ and δ° and is denoted by $\delta \times \delta^\circ$. The F-topological space $(\lambda \times \mu, \delta \times \delta^\circ)$ is called the product of the F-topological spaces (λ, δ) and (μ, δ°) [4].

The following results are fundamental for the next sections.

Proposition 1.1 [3]. If $\rho \in A_{\lambda}$, then $\forall \sigma \in B_{\mu}$, $(f|\rho)^{\leftarrow}(\sigma) = \rho \wedge f^{\leftarrow}(\sigma)$.

Proposition 1.2 [3]. If $\sigma \in B_{\mu}$ is maximal ,then $f^{\leftarrow}(\sigma_{\mu}) = (f^{\leftarrow}(\sigma))_{\lambda}$.

Proposition 1.3 [3]. For an F-proper function $f: \lambda \to \mu$ Then

- (i) $f^{\rightarrow}(f^{\leftarrow}(\sigma)) \leq \sigma, \forall \sigma \in B_{\mu}$.
- (ii) $f^{\leftarrow}(f^{\rightarrow}(\rho)) \ge \rho, \forall \rho \in A_{\lambda}$
- (iii) $f^{\leftarrow}(\rho \vee \sigma)) = f^{\leftarrow}(\rho) \vee f^{\leftarrow}(\sigma)$ and in general $f^{\leftarrow}(\vee_{j \in J} \sigma_j)) = \vee_{j \in J} f^{\leftarrow}(\sigma_j) \forall \rho, \sigma, \sigma_j \in \mathbf{B}_{\mu}$.
 - (iv) $f^{\leftarrow}(\rho \wedge \sigma) = f^{\leftarrow}(\rho) \wedge f^{\leftarrow}(\sigma), \quad \forall \sigma, \rho \in \mathbb{B}_{\mu}.$

Remark 1.4. An F-topology on a F-set can not be extended to the L-fuzzy setting. For this, see Remark 3.1.7 in [7].

Proposition 1.5 [14]. Let ρ and σ be F-subsets of an F-ts (λ, δ) . Then $\operatorname{int}(\rho_{\lambda}) = (cl(\rho))_{\lambda}$ and $cl(\sigma_{\lambda}) = (\operatorname{int}(\sigma))_{\lambda}$.

Theorem 1.6 [3]. If $f:(\lambda,\delta) \to (\mu,\delta^{\circ})$ is F-continuous and $\rho \in A_{\lambda}$, then $f|\rho: (\rho, \delta_{\rho}) \to (f^{\to}(\rho),\delta_{f^{\to}(\rho)}^{\circ})$. is F-continuous.

Proposition 1.7 Let $f_1: \lambda_1 \to \mu_1$, $f_2: \lambda_2 \to \mu_2$ and $f_1 \times f_2: \lambda_1 \times \lambda_2 \to \mu_1 \times \mu_2$ be F- proper functions. Then

- (i) if $\rho \le \lambda_1, \sigma \le \lambda_2$ then $(f_1 \times f_2)^{\rightarrow} (\rho \times \sigma) = f_1^{\rightarrow} (\rho) \times f_2^{\rightarrow} (\sigma)$,
- (ii) If $\zeta \le \mu_1, \eta \le \mu_2$ then $(f_1 \times f_2)^{\rightarrow} (\zeta \times \eta) = f_1^{\rightarrow} (\zeta) \times f_2^{\rightarrow} (\eta)$.

Proposition 1.8 [5]. If g is the graph function of an F-proper function $f: \lambda \to \mu$, then $g^{\leftarrow}(\rho \times \sigma) = \rho \wedge f^{\leftarrow}(\sigma) \forall \rho \in A_{\lambda}, \sigma \in B_{\mu}$.

Corollary 1.9 [5]. If $f: \lambda \to \mu$ is an F-proper function and g its graph function, then $g^{\leftarrow}(\lambda \times \sigma) = f^{\leftarrow}(\sigma) \forall \sigma \in B_{\mu}$.

Theorem 1.10 [5]. An F-proper function $f:(\lambda,\delta) \to (\mu,\delta^*)$ is F-continuous iff its graph function $g:(\lambda,\delta) \to (\lambda \times \mu,\delta \times \delta^*)$ is F-continuous.

Theorem 1.11 [4]. Let (λ_i, δ_i) and (η_i, γ_i) be F-ts s and $f_i:(\lambda_i, \delta_i) \to (\mu_i, \gamma_i)$ be F-continuous proper functions for $i = 1, 2, \ldots, n$. Then the F-proper function $f = \prod \lambda_i \to \prod \mu_i$ defined by: $f(x_1, \ldots, x_n), (y_1, \ldots, y_n) = \prod \lambda_i(x_1, \ldots, x_n)$ or 0 accordingly $(y_1, \ldots, y_n) = (y_{10}, \ldots, y_{n0})$ or $(y_1, \ldots, y_n) \neq (y_{10}, \ldots, y_{n0})$ is also F-continuous.

For definitions and results not explained in this paper, we refer to [1, 9] assuming them to be well known.

Definition 1.1 [9]. Let (ρ, δ_{ρ}) be a maximal subspace of an F-ts (λ, δ) . Then (ρ, δ_{ρ}) is called an F-retract (F-R, for short) of (λ, δ) there exists an F-continuous proper function $f: (\lambda, \delta) \to (\rho, \delta_{\rho})$ such that $f \mid \rho = id_{\rho}i.e., f(x) = \rho(x) \forall x \in X$. In this case f is called an F-retraction.

Definition 1.2. Let η be an F-set of an F-ts (λ, δ) then, η is called:

- (i) F-semiopen (briefly F-so) set of λ if, $\eta \le cl(int \eta)[1]$.
- (ii) F-preopen (briefly F-po) set of λ if, $\eta \le \text{int}(cl \eta)[1]$.
- (iii) F-strongly semiopen (briefly F-so)set of λ if, $\eta \le int(cl(int(\eta)))[1]$
- (iv) F-semi-preopen (briefly F-spo) set of λ if, $\eta \le cl(int(cl(\eta)))[1]$.

Their complements are called F-semiclosed, F-preclosed, F-strongly semiclosed and F-semi-preclosed sets.(resp. F-sc, F-pc, F-ssc, F-spc, for short).

Definition 1.3 [2]. $\rho \in A_{\lambda}$ are said to be quasi-coincident to λ (written as $\rho q \sigma$) if there exists $x \in X$ such that $\rho(x) + \sigma(x) > \lambda(x)$. If ρ are not quasi-coincident referred to λ we denote for this $\rho q \sigma$.

2. F-γ-open and F-γ -closed sets

Definition 2.1. Let η be an F-set on F-ts (λ, δ) Then, η is called a F- γ -open (resp. F γ -closed [Trial mode], briefly, F- γ 0 (resp., F- γ 0) if

 $\eta \le int(cl \ \eta) \ \lor \ \eta \le cl(int \ \eta) \ (resp., \ \eta \le int(cl \ \eta) \ \land \ \eta \le cl(int \ \eta))$

The family of all F- γ o (resp. F- γ c) sets of X will be denoted by (F γ O(λ) (resp., F γ C(λ).

Remark 2.1. (i) It is clear that a F-γo set is weaker than the concepts of a F-so set or a F-po set and stronger than the concepts of a F-spo set.

(ii) The union of F-yo sets is a F-yo set.

Now from the above definition and some known types of a (F-o)(F-c) sets, we have the following diagram:

The converse need not be true in general, as shown by the following examples.

Example 2.1. Let $X = \{x, y, z\}, \lambda = \underline{0.6}, \delta = \{\underline{0}, x_{0.1} \lor y_{0.2} \lor z_{0.3}, x_{0.2} \lor y_{0.3} \lor z_{0.4}, \lambda\}$. It is clear that $\underline{0.4}$ is F-sso but not F-o, $\underline{0.3}$ is F-sso but not F-sso and F-yo but not F-po and $\underline{0.21}$ is F-spo but not F-yo set.

Example 2.2. Let $X = \{x, y\}, \lambda = \underline{0.2}, \delta = \{\underline{0, 0.1}, x_{0.1} \\ \vee y_{0.2}, x_{0.1}, \lambda\}$. It is clear that $y_{0.1}$ is F- γ 0 but not F-so set and F-po but not F-sso set.

Remark 2.2.The intersection of two F-γo sets need not be F-γo as illustrated by the following example.

Example 2.3. Let $X = \{x, y\}, \lambda = \underline{0.3}, \delta = \{ \underline{0.0.1}, \underline{0.19}, \lambda \}$ It is clear that $x_{0.3} \vee y_{0.1}$ is F- γ 0, $\underline{0.2}$ is F- γ 0, but $x_{0.2} \vee y_{0.1}$ not F- γ 0 set.

Proposition 2.1. If v is a F- γ o set and $int(cl(v)) = \underline{0}$, then v is F-so.

Corollary 2.1. If v is a F- γ o set and $cl(int(v)) = \underline{0}$, then v is F-po.

Proposition 2.2. Each F- γo set which is F-c is F-so.

Corollary 2.2. Each F- yc set which is F-o is F-sc.

Proposition 2.3. Each F-spo set which is F-c is F- γο.

Remark 2.3. Let (λ, δ) and (μ, σ) be two F-ts s. Then the product $\zeta_1 \times \zeta_2$ of a F- γ o set ζ_1 of λ and F- γ o set ζ_2 of μ need not to be F- γ o set in the product space $(\lambda \times \mu, \delta \times \sigma)$.

Example 2.4. Let (λ, δ) be a F-ts where $\lambda = 0.6, \delta = \{0, 0.1, x_{0.1} \lor y_{0.2}, \lambda\}$. The F-set $\zeta_1 = x_{0.5} \lor y_{0.1}$ is F-γο. Let (μ, σ) be a F-ts where $\mu = 0.6$, $\delta = \{0.0, x_{0.2} \lor y_{0.3}, \mu\}$. The F-set $\zeta_2 = x_{0.5} \lor y_{0.1}$ is F-γο, but $\zeta_1 \times \zeta_2$ is not F-γο set.

Definition 2.2 Let η be an F-set of an F-ts (λ, δ) Then the γ -closure $(\gamma - cl)$ for short) and γ -interior $(\gamma - cl)$ for short) of η are defined as follows:

$$\gamma - cl(\eta) = \land \{\upsilon : \upsilon$$
 is F- γ c and $\eta \le \upsilon \}$
 $\gamma - int(\eta) = \lor \{\upsilon : \upsilon$ is F- γ o and $\upsilon \le \eta \}$.

Proposition 2.4. Let η be an F-set of an F-ts (λ, δ) . Then,

- (i) $\gamma cl(\eta) = (\gamma int(\mu))$
- (ii) $\gamma int(\eta') = (\gamma cl(\mu))'$.

Definition 2.3. Let η be an F-set of an F-ts (λ, δ) . Then, η is called F- γ -nbd (F- γ q-nbd) of a F-point x_r if there exists a F- γ 0 set v0 such that v1 ev2 v3 v4 and v5 v6 v7.

Proposition 2.5. A F-set η is F- γ 0 iff for every F-point $x_p q \eta, \eta$ is a F- γ q- nbd of x_p .

Proposition 2.6. Let $x_p \in P_i(\lambda)$ and $v \in I^X$. Then, $x_p q F - \gamma - cl(v)$ iff for every $F - \gamma$ q-nbd η of $x_p, \eta qv$.

Proposition 2.7. If $\eta \in I^{\chi}$ and $\upsilon \in F$ - $\gamma \circ (\lambda)$ such that $\eta = \eta \circ (\lambda)$, then $(\lambda) \circ (\lambda) \circ (\lambda)$.

3. F- γ-continuity

Definition.3.1.Let $f:(\lambda, \delta) \to (\mu, \delta)$ be an F-proper function from an F-ts (λ, δ) to another F-ts (μ, δ) . Then, f is called:

F- γ -continuous (briefly F-sc) mapping if, $f^+(v)$ is F- γ 0 set of $\lambda \forall v \in \delta^-$.

Theorem 3.1. Let $f:(\lambda,\delta) \to (\mu,\delta)$ be a F-proper function from a F-ts (λ,δ) to another F-ts (μ,δ) If the graph $g:(\lambda,\delta) \to (\lambda \times \mu,\delta \times \delta)$ of f is F- γ c, then f is F- γ c mapping.

Proof. Let v be a F-o set of μ , then $f^+(v) = \lambda \wedge f^+(v) = g^+(\lambda \times v)$. Since g is F- γc and $\lambda \times v$ is F-o set of $\lambda \times \mu$, then $f^+(v)$ is a F- γc set of λ Hence f is a F- γc mapping.

Theorem 3.2. Let $f:(\lambda,\delta)\to(\mu,\delta)$ be a F-proper function from a F-ts (λ,δ) to another F-ts (μ,δ) . Then the following statements are equivalent:

(i)
$$f$$
 is a F- γc .

- (ii) For each F-point $x_p \in P_i(\lambda)$ and each F-nbd ζ of μ containing $f(x_p)$ there exists a F- γ -nbd η of λ containing x_p such that $f(\eta) \le \zeta$.
- (iii) For each F-point $x_p \in P_r(\lambda)$ and each F-q-nbd ζ of $f(x_n)$ there exists a F- γ -q-nbd of x_n such that $f(\eta) \le \zeta$.
- (iv) The inverse image of each F-c set in μ is a F- γc set in λ .
 - (v) $f(\gamma cl(\theta)) \le cl(f(\theta)), \forall \theta \in \lambda$.
 - (vi) $\gamma cl(f^{\leftarrow}(\beta)) \le f^{\leftarrow}(cl(\beta)), \forall \beta \in \mu.$
 - (vii) $cl(int(f^{\leftarrow}(\beta))) \wedge int(cl(f^{\leftarrow}(\beta))) \leq f^{\leftarrow}(cl(\beta))), \forall \beta \in \mu.$

Proof . $(i) \Leftrightarrow (ii) \Leftrightarrow (iii), (i) \Leftrightarrow (iv)$ It is obvious.

$$\begin{split} &(iv) \Leftrightarrow (v) \ : \ \text{Let} \quad \theta \in \lambda, \quad \text{then} \quad cl(f(\theta)) \in \mu. \quad \text{By} \quad (\text{iv}) \\ &f^{\leftarrow}(cl(f(\theta))) \quad \text{is F-γc set in λ. Since } \quad \theta \leq f^{\leftarrow}(f(\theta)) \quad \text{we have,} \\ &\gamma - cl(\theta) \leq \quad \gamma - clf^{\leftarrow}(f(\theta)) \leq \gamma - clf^{\leftarrow}(clf(\theta))) = f^{\leftarrow}(clf(\theta))) \quad , \quad \text{then} \\ &f(\gamma - cl(\theta)) \leq clf(\theta). \end{split}$$

 $(v) \Rightarrow (vi)$: Let $\beta \in \mu$. By (v) we have $f(\gamma - cl(f^{\leftarrow}(\beta))) \le cl(\beta) \Rightarrow \gamma - cl(f^{\leftarrow}(\beta)) \le f^{\leftarrow}cl(\beta)$.

 $(vi) \Rightarrow (iv)$: Let $\beta \in \mu$. By (vi) $\gamma - cl(f^{\leftarrow}(\beta)) \le f^{\leftarrow}cl(\beta)) = f^{\leftarrow}(\beta)$). Then $f^{\leftarrow}(\beta)$ is a F- γ c set in λ .

 $(ii) \Rightarrow (vii)$: Let $\beta \in \mu$. Then, $cl(\beta) \in \mu$, by (ii) $f^{\leftarrow}(cl(\beta))$ is a F- γ c set in λ .. Hence $f^{\leftarrow}(cl(\beta)) \ge cl(\delta_i - int(f^{\leftarrow}(cl(\beta)))) \land int(cl(f^{\leftarrow}(cl(\beta)))) \ge cl(int(f^{\leftarrow}(\beta))) \land int(cl(f^{\leftarrow}(\beta)))$.

 $(vii) \Rightarrow (ii)$:Let $\beta \in \mu$. By(vii)

 $cl(\operatorname{int}(f^+(\beta))) \wedge \leq \operatorname{int}(cl(f^+(\beta))) \leq f^+(cl(\beta))) = f^+(\beta)$. Hence $f^+(\beta)$ is a F-yc set in μ .

Corollary 3.1. Let $f:(\lambda,\delta) \to (\mu,\delta^*)$ be an F-proper function and F- γc . Then $f^{\leftarrow}(\operatorname{int} \beta) \leq \operatorname{int}(cl(f^{\leftarrow}(\beta))) \vee cl(\operatorname{int}(f^{\leftarrow}(\beta))) \forall \beta \in \mu$.

Now from the above theorem it is clear that each F-pc mapping is a F- γ c and each F-sc mapping is also F- γ c and the following diagram summarizes the above discussion:

The converse need not be true in general, as shown by the following examples.

Example 3.1. Let $X = \{x, y\}, \lambda = \underline{0.4}, Y = \{a\}, \mu = \underline{0.4}\delta = \{\underline{0}, x_{0.2} \lor y_{0.2}, x_{0.1}, \lambda\}, \delta^{-}\{\underline{0}, \underline{0.2}, \mu\}$ Let $f : (\lambda, \delta) \to (\mu, \delta^{-})$ defined by f(x, a) = f(y, a) = 0.4, . It is clear that f is F-ssc but not F-c.

Example 3.2.

Let $X = \{x, y\}, \lambda = \underline{0.4}, Y = \{a, b\}, \mu = \underline{0.4}\delta = \{\underline{0}, x_{0.2} \lor y_{0.12}, x_{0.29} \lor y_{0.28}, \lambda\}, \quad \delta^*\{\underline{0}, \underline{0.2}, \mu\}$ Let $f: (\lambda, \delta) \to (\mu, \delta^*)$ defined by $f(x, a) = f(y, a) = \underline{0.4}, f(y, b) = 0$. It is clear that f is F-pc but not F-sc. Also, f is F- γ c but not F-sc.

Example 3.3.

Let $X = \{x, y, z\}, \lambda = \underline{0.6}, Y = \{a, b, c\}, \mu = \underline{0.6}, \delta = \{\underline{0}, x_{0.2} \lor y_{0.2} \lor z_{0.3}, x_{0.2} \lor y_{0.3} \lor z_{0.4}, \lambda\},$. $\delta^* \{\underline{0}, \underline{0.21}, \mu\}$.Let $f : (\lambda, \delta) \to (\mu, \delta^*)$ defined by f(x, a) = f(y, a) = f(z, a) = 0.6. It is clear that f is F-spc but not F- γ c.

Example 3.4. Let $X = \{x, y\}, \lambda = \underline{0.4}, Y = \{a, b\}, \mu = \underline{0.4}\delta = \{\underline{0, 0.1, 0.2}, \lambda\}, \delta^{\circ}\{\underline{0, 0.3}, \mu\}$ Let $f : (\lambda, \delta) \to (\mu, \delta^{\circ})$ defined by f(x, a) = f(y, a) = 0.6, f(y, b) = 0., f(x, b) = f(y, b) = 0. It is clear that f is F-sc but not F-sc. Also, f is F-yc but not F-pc.

Remark 3.1. The composition of two F-yc mappings need not be Fyc, as shown by the following example.

Example 3.5. Consider the F-ts 's $(\lambda, \delta), (\mu, \delta^{\circ})$ and (λ, σ) where $\delta = \{\underline{0}, \underline{0.1}, x_{0.1}, y_{0.19}, \lambda\}$, and $\delta^{\circ} = \{\underline{0}, \underline{0.31}, \lambda\}$. Then the F-proper function $f: (\lambda, \delta) \rightarrow (\mu, \delta^{\circ})$ defined by f(x, a) = f(y, a) = 0.5, f(x, b) = f(y, b) = f(y, b) = 0. Is F- γ c, also, the F-proper function $g: (\lambda, \delta^{\circ}) \rightarrow (\lambda, \delta)$ defined by f(x, a) = f(y, a) = 0.5, f(x, b) = f(y, b) = f(y, b) = 0. Is F- γ c, but gf is not F- γ c.

Remark 3.2. Let $f_1:(\lambda_1,\delta) \to (\mu_1,\delta^*)$ and $f_2:(\lambda_2,\delta) \to (\mu_2,\delta^*)$ be F-proper functions. Then if f_1 and f_2 are F-ycontinuous, then $f_1 \times f_2$ may not be Fy-continuous.

Example 3.6.

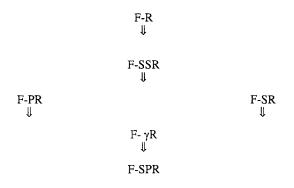
Let $X_1 = \{x, y\}, Y_1 = \{x, y\}, X_2 = \{a, b\}, Y_2 = \{a, b\}, \lambda_1 = \underline{0.6}, \mu_1 = \underline{0.6}, \lambda_2 = \underline{0.41}, \mu_2 = \underline{0.41}$, $\delta = \{\underline{0}, \underline{0.1}, x_{0.21} \lor y_{0.1}, \lambda\}$, $\delta^*\{\underline{0}, \underline{0.2}, \mu_1\}$. Let $f_1 : (\lambda_1, \delta) \to (\mu_1, \delta^*)$ defined by $f_1(x, x) = 0.6, f(y, x) = 0.6, f_1(x, y) = f_1(y, y) = 0$. is F- γ c. Also. Also $\sigma = \{\underline{0}, \underline{0.3}, \lambda_2\}$, $\sigma^* = \{\underline{0}, \underline{0.3}, \mu_1\}$, $f_2 : (\lambda_2 \delta) \to (\mu_2, \delta^*)$ defined by $f_2(a, a) = f(b, a) = 0.41, f_2(a, b) = f_2(b, b) = 0$. is F- γ c. But $f_1 \times f_2$ is not F- γ continuous.

4. F-γ-retracts

Definition 4.1 [9]. Let (ρ, δ_{ρ}) be a maximal subspace of an F-ts (λ, δ) . Then (ρ, δ_{ρ}) is called an F-strongly semi-retract, F-semi retract, F-pre retract and F-semi pre retract of (λ, δ) ; (briefly F-SSR; F-SR,F-PR,F-SPR) if there exists an F-strongly semi-continuous, F-semi continuous, F-pre continuous and F-semi pre continuous (briefly, F-SSC; F-SC,F-PC,F-SPC)-proper function $f:(\lambda, \delta) \rightarrow (\rho, \delta_{\rho})$ such that $f \mid \rho = id_{\rho}$ i.e., $f(x) = \rho(x) \ \forall x \in X$. In this case f is called an F-strongly semi-retraction, F-semi retraction, F-pre retraction and F-semi pre retraction.

Definition 4.2. Let (ρ, δ_{ρ}) be a maximal subspace of an F-ts (λ, δ) . Then (ρ, δ_{ρ}) is called an F- γ -retract of (λ, δ) ; briefly F- γ -R; if there exists an F- γ c proper function $f:(\lambda, \delta) \to (\rho, \delta_{\rho})$ such that $f | \rho = id_{\rho}$ i.e., $f(x) = \rho(x) \ \forall x \in X$. In this case f is called an F- γ -retraction.

Remark 4.1. From the above definitions one may notice that:



Example 4.1. Let $X = \{x, y\}, \lambda = \underline{0.6}, \delta = \{\underline{0}, x_{0.2} \lor y_{0.3}, \lambda\}$ and $\rho = x_{0.6}$. One can easily verify that (ρ, δ_{ρ}) is an F-PR and F- γ --R of (λ, δ) but neither an F-SSR nor an F-SR of it.

Example 4.2. Let $X = \{x, y\}, \lambda = \underline{0.4}, \delta = \{\underline{0}, x_{0.1} \lor y_{0.09}, \lambda\}$ and $\rho = x_{0.4}$. One can easily verify that (ρ, δ_{ρ}) is an F-SR and F- γ -R of (λ, δ) but neither an F-SSR nor an F-PR of it.

Example 4.3. Let $X = \{x, y\}, \lambda = \underline{0.7}, \delta = \{\underline{0}, x_{0.2} \lor y_{0.1}, \underline{0.3}, \lambda\}$ and $\rho = x_{0.7}$. One can easily verify that (ρ, δ_{ρ}) is an F-SSR of (λ, δ) but not F-R of it.

Example4.4.Let $X = \{x, y, z\}, \lambda = \underline{0.6}, \delta = \{\underline{0}, x_{0.1} \lor y_{0.2} \lor z_{0.3}, x_{0.21} \lor y_{0.3} \lor z_{0.4}, \lambda\}$ and $\rho = x_{0.6}$. One can easily verify that (ρ, δ_{ρ}) is an F-SPR of (λ, δ) but not F- γ -R of it.

Theorem 4.1. Let $f:(\lambda,\delta) \to (\rho,\delta_{\rho})$ be a F-proper function such that $f \mid \rho = id_{\rho}$. If the graph $g:(\lambda,\delta) \to (\lambda \times \rho,\delta \times \delta_{\rho})$ is F- γ -continuous, then f is a F- γ -R.

Remark 4.2. Let $f:(\lambda,\delta)\to(\rho,\delta_\rho)$ be a F-proper function such that $f|\rho=id_\rho$. If $f:(\lambda,\delta)\to(\rho,\delta_\rho)$ is F- γ -R, $g:(\rho,\delta_\rho)\to(\sigma,(\delta_\rho)_\sigma)$ is F- γ -R, $\sigma\le\rho$ then gf is need not be a F-- γ -R.

Example 4.5. $X = \{x, y, z\}, \lambda = \underline{0.7}, \delta = \{\underline{0}, x_{0.2} \lor y_{0.3} \lor z_{0.1}, \lambda\}$ $\rho = x_{0.7} \lor y_{0.7}$ and $\sigma = x_{0.7}$. One can easily verify that (ρ, δ_{ρ}) is a F - γ -R of (λ, δ) and $(\sigma, (\delta_{\rho})_{\sigma})$ is a F- γ -R of (ρ, δ_{ρ}) but $(\sigma, (\delta_{\rho})_{\sigma})$ is not a F- γ -R of (λ, δ) .

Remark 4.3. If (ρ, δ_{ρ}) is a F- γ R of (λ, δ) and $(\sigma, \delta_{\sigma})$ is a F- γ -R of (μ, δ) then $(\rho \times \sigma, \delta_{\rho} \times \delta_{\sigma})$ need not be a F- γ -R of $(\lambda \times \mu, \delta \times \delta)$.

Example 4.6 Let $X = \{x, y\}, \lambda = \underline{0.6}, \delta = \{\underline{0.0.1}, x_{0.21} \vee y_{0.1}, \lambda\}$ and $\rho = x_{0.6}$. $Y = \{a, b\}, \mu = \underline{0.41}, \delta' = \{\underline{0.0.3}, \lambda\}$ and $\sigma = a_{0.41}$. One can easily verify that (ρ, δ_{ρ}) is a F- γ -R of (λ, δ) and $(\sigma, \delta_{\sigma}^*)$ is a F- γ -R of (μ, δ') but $(\rho \times \sigma, \delta_{\sigma} \times \delta_{\sigma}^*)$ is not a F- γ - R of $(\lambda \times \mu, \delta \times \delta)$.

References

- [1] K. K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82(1981), 14-32.
- [2] M. K. Chakrabarty and T. M. G. Ahsanullah, Fuzzy topology on fuzzy sets and tolerance topology, Fuzzy Sets and Systems 45(1992), 103-108.
- [3] A.K. Chaudhuri and P. Das, Some results on fuzzy topology on fuzzy sets, Fuzzy Sets and System 56(1993), 331-336.
- [4] P. Das, Fuzzy topology on fuzzy sets, product fuzzy topology and fuzzy topological groups, Fuzzy Sets and Systems 100(1998), 367-372.
- [5] M. A. Fath Alla and F.S. Mahmoud, Fuzzy topology on fuzzy sets: functions with fuzzy closed graphs and strong fuzzy closed graphs, J. Fuzzy Math.9(3), (2001), 525-533.
- [6] I. M. Hanafy, On fuzzy γ -open sets and fuzzy γ -continuity, J. fuzzy Math. 7(2)(1999).
- [7] Liu Ying-Ming and Luo Mao-Kang, Fuzzy topology, World Scientific. Singapore (1997).
- [8] F. S. Mahmoud, and M. A. Fath Alla, Strong-AE and Strong-ANE fuzzy topological spaces, J. fuzzy Math. 8(2).(2000), 677-690.
- [9] F.S.Mahmoud, M.A.Fath Alla and S.M.Abd Ellah, Fuzz y topology on Fuzzy Sets: Fuzzy Retracts (submitted).
- [10] Pu Pao-Ming and Bu Young-Lee, Fuzzy semi-preopen sets and fuzzy semi-precontinuous mappings, Fuzzy Sets and Systems, 67(1994),359-364.
- [11] S. E. Rodabaugh, Suitability in fuzzy topological spaces, J. Math. Anal. Appl. 79(1981), 273-285.
- [12] S. E. Rodabaugh, Categorical frameworks for stone representation theories, in" Applications of category theory to fuzzy subsets", 177-231, Ed by S. E. Rodabaugh et al. Kluwer Academic Publishers, (1992), Netherlands.
- [13] S. Sampath Kumar, On fuzzy pairwise γ -continuity and fuzzy pairwise pre-continuity, Fuzzy Sets and Systems, 62 (1994), 231-238.
- [14] S. Sampath Kumar, Semi-open sets, semi-continuity and semi-open mapping in fuzzy bitopological spaces, Fuzzy Sets and Systems 64 (1994), 421-426.
- [15] B.S. Zhong, Fuzzy strongly semiopen sets and fuzzy strong semicontinuity, Fuzzy Sets and Systems, 52(1992),345-351.

Ibrahim Mohamed Hanafy

Degrees:

- B. SC. in Math. from Fac. Of Science, Assiut Univ. 1976.
- M. SC in Math. (numerical analysis) from Fac. Of Science, Assiut Univ. 1981.
- Ph. D. in Math. (Topology) from Fac. Of Science, Tanta Univ. 1990.

Academic Responsibilities:

- Assistant of the Dept. of Math. Fac. Of Science, Assiut Univ.
- Assistant lecturer of the Dept. of Math. Fac. Of Science, Assist Univ.
- lecturer of the Dept. of Math. Fac. Of Education, Suez Canal University, El-Arish, Egypt.
- Assistant Prof. of the Dept. of Math. Fac. Of Education, Suez Canal University, El-Arish, Egypt.

E-Mail: ihanafy@hotmail.com

F. S. Mahmoud

Department of Mathematics, Faculty of Science (82524), Sohag-Egypt.

M. M. Khalaf

Department of Mathematics, Faculty of Science (82524), Sohag-Egypt.