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Abstract

The aim of this paper is to introduce fuzzy y-continuity and fuzzy vy -retracts in a fuzzy topology on fuzzy sets and establish some of their

properties. Also, the relations between these new concepts are discussed.
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1. Introduction and Preliminaries

Chakrabarty and Ahsanullah [2] introduced the concept of a
fuzzy topology on a fuzzy set and defined the category FUZZ-
TOP where the objects are fuzzy topological spaces y and the
morphisms are fuzzy-continuous proper functions. In [8,11] the
concepts of fuzzy retract and fuzzy neighborhood retract has
been introduced. Also, the concept of a fuzzy retract in a fuzzy
topology on fuzzy sets has been introduced in 2003 [9]. Hanafy
in [6] introduced the concepts of fuzzy 7y -open (y -closed)
sets and fuzzy y -continuity. In the present paper, we introduce
and study the concepts of fuzzy y -open(y -closed) sets and
fuzzy y -continuity in a fuzzy topology on fuzzy sets. Also, this
paper is devoted to introduce various fuzzy retracts in a fuzzy
topology on fuzzy sets and establish some of their properties. A
comparison between these new concepts is of interest.

Throughout this paper, I will denote the closed unit interval,
let X be a non-empty set. A fuzzy set of X is a function with
domain X and values in I, that is, an element of 1% . A fuzzy
point x, is a fuzzy set whose support is the point x and its
value r, O<r < 1. In this paper , we will shorten the word fuzzy
as F [7] .The family of all F-points of A will be denoted by
Pt(A)

LetAel* , A, ={{el”:{<2}and B, ={ne " :n< u} Then,
vieI* A,
is an F-lattice ( completely distributive lattice) which has an
"A, oA [T

If peA,, the complement of preferred to A1, denoted
by p; is defined by p, (X) = A(x)—p(x),Vxe X and p is
said to be maximal if Vxe X,p(x)#20 = p(x)=A(x) [3].

order-reversing involution

An F-subset f of Xx Y is said to be an F-proper function
from VAEI*) to VuE!l") if
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1) fFX, y)SAX) AU(Y), Y(xy)e XxY.

(ii)) Vxe X,3Jy,eY such that f (x,y,)= Ax) and f(x,
y)=0ify=y,.
Let f: A->pu  be an F-proper function

from A to u Define(adopting Rodabaugh’s symbols [12] )

1) fTEN=V{f(x,y)rpx):xe X},Vpe A, VyeY

() ) =V{f(x,y)r0(x):xe X},VGe B, Vxe X (5]

Let peA,.Then flp defined by (f|p)(x,y)=f(x.)
AP(X)V(x,y)e X XY, is said to be the restriction of f to p
[31.

An F-proper function Let f: 4 — u is said to be

(1) injective if f(x.y)=AxNE0), f(x,3) =2 )=0)= x,
=x,Yxx,€ X,yeY,

(i) surjective if VyeY with u(y)#0,3xe X such that
Flx, yy=Ax),

(iii) bijective if f is both injective and surjective.
id,:A—>2A defined by
id, (x,y)=Ax) or 0 accordingly as x=yor y=#x issaid tobe

The  F-proper  function
the identity F-proper functionon A [3].

If f:A—>uand g:u—-v(vel?) are F-proper functions,
then the F-proper function gf:1—v is defined by

_fAlo i3 Y suchthar fix,v)=ALO. gUN.IISHIY),
gf (x,2)={

0 othenyise

or gf(x,2)=V, ., f(x,)Ag(y,2)..

A collection & of F-subsets of Aie., 8 cA, is said to be
an F-topology on A if

(1) 0.Ae8,

(i) p,edvjet=v,,ped,

(iii) p,ced=>pArced.
A,8) is said to be an F-topological space (briefly , F-ts).
The members of § are said to be F-open ( F-o) sets of 1 We
denote & the family of F-closed (F-c) sets of A, that is,
ped iff A-p . If peA,, then §,={paf:{ed} is an
fuzzy topology on p and (p,6,) is called a subspace of
(4,8) [3].
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Let (4,6)be an F-tsand pe A, . Then the interior (closure)
of p isdefined by

(i) intp=v{{:{cé,f<p} [12].

() ep=a{n:ned,p<n} [2]

Let £:(A,6)— (u,8")be an F-proper function from an F-ts
(A, 8)into an F-ts (u,6°). Then f is called F-continuous if
f e)ed Voed)[3]

The graph function g:A—>Axu of f 1is defined by :
glz,(x, ) =f(x,yy if z=x and g(z(x,y)=0 if
Z#EX Vze X,V(x,y)e X xY [5].

If f:4 > (i=12) are two F-proper functions, then the
function  f,xf,: A4 x4, > uxy, defined by ixf)
(O, 3,0, (0, ¥2) = LX) A f (0, 3,)9(x,, 0 )€ X X X,,V(y,,9,)€
Y,xY, ,is called the F-product function of f, and f,.One
can easily prove that f,x f, is an F-proper function [5].

Let (,8) and (1,8") be two F-topological spaces. The
collection R={{xn:{ecd,ned’} forms an open base of an
F-topology in Axu . The F-topology in Axu induced by R
is called the product F-topology of § and & and is denoted
by &x& . The F-topological space (Axu,§x8") is called the
product of the F-topological spaces (1,6) and (1,67 [4].

The following results are fundamental for the next sections.

Proposition 1.1 [3]. If
VoeB,, (f|p)" (©)=pAf().

peA, s then

Proposition 1.2 [3]. maximal ,then

f@ )=(f" ;.

If oeB, is

Proposition 1.3 [3]. For an F-proper function
f:A—>u Then

@ f7(f(o)<o,VoeB,.

() (N2 p.YpeA,

@iii) S (pvon=rT(p)v (o) and in  general

fNV,0) =V, , fT(0,)Vp,0,0,€ B,.
(i) fT(pAro)=Ff(PIAfT(O), Vo.,peB,.

Remark 1.4. An F-topology on a F-set can not be extended
to the L-fuzzy setting. For this, see Remark 3.1.7 in [7].

Proposition 1.5 [14]. Let pand o be F-subsets of an F-ts
(4,6) . Then int(p;) = (cl(p)), and cl(c}) = (int(6)), -

Theorem 1.6 [3]. If f:(A,8)— (u,8’)is F-continuous and

peA; , then flp: (p. 8,)-(f(p)5,. ) is F-
continuous.
Proposition 1.7 Let f:A4 -y , friA, —p, and

f,% fo: A x4, — u, x u, be F- proper functions . Then
@if p<A,o<, then (fxf£) (pxo)=f(P)x (o),
(i) If {<p,n<p, then (Ax£)7(Exm= 7G50 .
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Proposition 1.8 [5]. If g is the graph function of an F-
fiA-u then g (pxo)=
pAf(oO)VpeA,;,0eB,.

proper  function

Corollary 1.9 [5]. If f:A -y is an F-proper function and
g its graph function, then g“(Ax0)=f“(c)VoeB,.

Theorem 1.10 [5]. An F-proper function f:(4,8) - (4,6")
is F-continuous iff its graph function g:(4,6) » (Axu,8x8") s
F-continuous.

Theorem 1.11 [4]. Let (4,5,)and (1,,7,) be F-ts's and
fi:(A4,8)->(u,,y,) be F-continuous proper functions for i =
1,2,......n. Then the F-proper
defined  by: FEean ), (Yo ¥,) =
[1A G nx,, of O accordingly (..., %) =(Yigsres Vo) OF

function

For definitions and results not explained in this paper, we
refer to [1, 9] assuming them to be well known.

Definition 1.1 [9]. Let (p,6,) be a maximal subspace of an
F-ts (1,6). Then (p,8,) is called an F-retract (F-R, for
short) of (A4,6) there exists an F-continuous proper function
f:(4.8)>(p,8,) such that flp=id,ie,f(x)=p(x)Vxe X. In
this case f is called an F-retraction.

Definition 1.2. Let n be an F-set of an F-ts (4,6) then,
n iscalled:

(i) F-semiopen (briefly F-so) set of A if, n<cl(int n)[1].

(ii) F-preopen (briefly F-po) set of A if, n< int(cl n){1].

(iii) F-strongly semiopen (briefly F-so)set of A if, n<int(cl
(int(m)))[1]

(iv) F-semi-preopen (briefly F-spo) set of A4 if, n=cl(int(cl
1]

Their complements are called F-semiclosed, F-preclosed, F-
strongly semiclosed and F-semi-preclosed sets.( resp. F-sc¢, F-
pc, F-ssc, F-spc, for short ).

Definition 1.3 [2]. pe A, are said to be quasi-coincident to
such that

If pand o are not quasi-coincident referred

A ( written as pgo ) if there exists xe X
p(x)+0(x)> A(x).
to A we denote for this pgo .

2. F-y-open and F-y -closed sets

Definition 2.1. Let n be an F-set on F-ts (4,8) Then, 1 is
called a F-y-open ( resp. F y-closed [Trial mode], briefly, F-yo
(resp., F-yo)if

n<int(el m) v n<cl(int n) (resp., n<int(cl n) A n<cl(int
)
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The family of all F-y o (resp. F-yc) sets of X will be denoted
by (FyO( 2 ) (resp., Fy C(4).

Remark 2.1.
the concepts of a F-so set or a F-po set and stronger than the

(i) 1t is clear that a F-yo set is weaker than

concepts of a F-spo set.
(it) The union of F-yo sets is a F-yo set.

Now from the above definition and some known types of a
( F-0)( F-c) sets, we have the following diagram:

F-o(F-c)
U

F-sso (F-ssc)
4
F-po(F-pc) F-so (F-sc)
y U
F-vo (F-vyo-c)
U
F-spo (F-spc)

The converse need not be true in general, as shown by the
following examples.

Example 2.1. Let X ={xy2},2=06,6={0,x,V ¥,V 2.,
X5V Yos V 24 A} . It s clear that 0.4 is F-sso but not F-o, 0.3
is F-so but not F-sso and F-yo but not F-po and 021 is F-
spo but not F-yo set.

Example 2.2, Let X ={x,y},A=02,6={ 0,0.1x,
V¥o2 X, A} . It is clear that y,, is F-yo but not F-so set and F-
po but not F-sso set.

Remark 2.2.The intersection of two F-yo sets need not be F-
vo as illustrated by the following example.

Example 2.3. Let X ={x,y},A=03,6§ ={ 0,0.1,0.19,4} It is
clear that x,,vy,, 1is F-yo, 0.2is F-yo, but x,vy, notF-

Yo set.

Proposition 2.1. If v is a F-y o set and int(c/(v))=0, then
v is F-so.

Corollary 2.1. If v is a F- y o set and cl(int(v))=0, then
v is F-po.

Proposition 2.2. Each F- yo set which is F-c is F-so.
Corollary 2.2. Each F- yc set which is F-o is F-sc.

Proposition 2.3. Each F-spo set which is F-c is F- yo.

Remark 2.3. Let (A4,6)and (u,0)be two F-ts's . Then the
product {,x¢, of a Fy o set ¢, of A and F-yo set {,of
4 need not to be F-y o set in the product space (Axu,8xo).

Example 24. Let (1,§) be a F-ts where
A =06,6 ={0,0.1x,, v ¥,,A}. The F-set §, =x,,vy,, is F-yo.
Let (u,0)be a F-ts where u=0.6, 6={ 0,x,V ¥y, 1}

The F-set {, =x,5v y,, is F-yo,but { x{, isnotF-yo set.

Definition 2.2 Let n be an F-set of an F-ts (1,6) Then the y
-closure (y- ¢l . for short) and y-interior (y—cl for short) of n
are defined as follows:

y—clm=na{v:v
y—intM)=v{v:v

isF-ycand n<v}
isF-yoand v<n}.

Propesition 2.4. Let n be an F-set of an F-ts (4,6) . Then,
(D y-cl@m)=(y~int(p)
() y—int(n) =y ~cl(u)) .

Definition 2.3. Let 1 be an F-set of an F-ts (A,8) . Then, 7 is
called F- y -nbd (F- y g-nbd) of a F-point x, if there exists a
F-yoset v suchthat x ev<n(x,qv and v<p.

Proposition 2.5. A F-set n is F- yo iff for every F-point
x,q0,m isaF-yg-nbdof x,.

Proposition 2.6, Let x,eP(1) and wel¥  Then,

x,q F~=y—cl(v) iff for every F- y g-nbd n of x,,nqv.

Proposition 2.7. If ner* and ve F- yo( A) such that
nqv,then F —y —cl(mq .

3. F- y-continuity

Definition.3.1.Let f:(A,8)— (u,6 ) be an F-proper function
from an F-ts (A,8) to another F-ts (u4,6 ) . Then, f is called:

F- y-continuous (briefly F-sc) mapping if, f* () is F- yo
setof AVved .

Theorem 3.1. Let f:(4,6)—> (1,6 ) be a F-proper function
from a F-ts (A,6) to another F-ts (u,6) If the graph
g:(A,8)>(Axu,dx6) of f is F-y c, then fis F- yc
mapping.

Proof. Let v be a F-o set of pu , then
FrW=AAf (V)=g"(Axv). Since g is F- yc and Axv is
F-o set of Axu,then f*(v)isaF-yosetof A Hence f is
a F- yc mapping.

Theorem 3.2. Let f:(4,8)—(u,8 )be a F-proper function
from a F-ts (4,8) to another F-ts (i,6 ). Then the following
statements are equivalent :

@ f isaF-yc.
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(ii) For each F-point x,e F(A)and each F-nbd { of
containing f(x,) there exists a F- ynbd n of A
containing x, suchthat f(ms¢.

(iii) For each F-point x,e P(A)and each F-q-nbd ¢ of
f(x,) thereexists a F-y-q-nbd of x,suchthat f(ms<{.

(iv) The inverse image of each F-c setin p is a F- yc set in
A.

(V) fly—cl@n<cl(f6).Voe A

Vi) y-c(f BN (AP, VBe .

(vil) cl(int(f (BN Aint(cl(f (BN < f(l(P)). VB e u.

Proof . (i) & (ii) & (i), (i) © (v) It is obvious.

vy @) : Let @ed, then cl(f@)epu.
F(f@))) is F-yc set in A. Since 0< f(f()
Y=c@) < y—clf (FONSy—clf “ (@)= f(clf0))) , then
F(y—cl@)) <clf 0).

v)=> (i) :Let Beu By (v) we have f(y—c(f (B))<
c(By=y—cl(fT (BN fFckB).

(iy=>(@v): Let Bepu. By (vi) y-cd(f (BN fcl(B)=
Fo(Bn.-Then f(B) isaF-ycsetinA.

(ify=> (vii) :Let Be u. Then, cl(f)e u,by (i) f(cl(P))is
a F-yc set in A. Hence f“(cl(B))2cl(S,—int(f (cl(B))) A
int(cl(f “ (cl(BN)) = cl(int( £~ (B))) Aint(cl(f ~(B))).
(vii) = (i) :Let B e u. By(vii)

By (iv)
we have,

cl(int(f ~ (B <int(cl(f (BN < £ (cl(BN) = £ (B). Hence
foB) isa F-yc set in p.

Corollary 3.1. Let f:(4,6)>(u,8") be an F-proper
function and F-yc. Then f“(intf)<int(cl(f (B)v

clGint(f (BB e p.

Now from the above theorem it is clear that each F-pc
mapping is a F-y ¢ and each F-sc mapping is also F-yc and the
following diagram summarizes the above discussion:

F-c
4

F-ssc
F-pc F-sc
F-v-c

U
F-spe

The converse need not be true in general, as shown by the
following examples.

Example 3.1. Let X ={x,y1,A=04Y ={a}, n=040=(0,
Xp2 v yo.z’xo.nl}v ) {0,0.2, u} Let f:(A0)-> (,u,6“) defined by
f(x,a)= f(y,a)=04, Ttis clear that f is F-ssc but not F-c.
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Example 3.2,

Let X ={x,yLA=04,Y ={a,b}, 11 =046 ={0, %5, V Yy 1: %o V
Yourd)  6°{0,02,u) Let  f:(A,6)—>(u,8") defined by
flx,a)=f(y,a)=04, f(y,b)=0. It is clear that f is F-pc but
not F-ssc. Also, f is F~yc but not F-sc.

Example 3.3.

Let X ={x,y,2},4=0.6,Y ={a,b,c}, 4 =0.6,6 ={0, %, V ¥y, V Z3
Xoo v Yos ¥ ZoasAts §°(0,021,u} Let f:(4,8)>u,d")
defined by f(x,a)= f(y,a)= f(z,a)=0.6. It is clear that f is
F-spc but not F-yc.

Example 34. Let X={xy},1=04,Y={a,b},u=046=
{0,0.1,02,A), &°{0,0.3,u} Let f:(1,6)—= (u,6’) defined by
fx,a)= f(3,a)=0.6, f(y,b)=0., f(x,b)= f(y,b)=0. It is clear
that f is F-sc but not F-ssc. Also, f is F-yc but not F-pc.

Remark 3.1. The composition of two F-yc mappings need
not be Fyc, as shown by the following example.

Example 3.5. Consider the F-ts 's (4,6),(4,6°) and
(A,0) where 8 ={0,0.1,x,,,¥,,0,4}, and 8 ={0,0.31,A} .Then the
F-proper function f:(4,8)—> (u,6") defined by f(x,a)=
f(y,a)=05, f(x,b)= f(y,b)= f(y,b)=0.Is F- yc, also, the F-
proper function g:(4,8°) — (4,8) defined by f(x,a)= f(y.a)=
0.5, f(x,b)= f(y,b)= f(y,b)=0. IsF-yc,but gfisnotF-yc.

Remark 3.2. Let f:(4,8)—>u,8) and f£:(1,,6)—
(u4,,6") be F-proper functions. Then if f, and f, are F-
ycontinuous, then £, x f, may not be Fy-continuous.

Example 3.6.

Let X, ={x,y}Y, ={x,y}, X, ={a,b},Y, ={a,b}, X, =0.6, 1, =
06,4, =041, 1, =041 B ={0,01,%, v y,,,4}, 670,02, .
Let f£:(A,8)—>(u,.8") defined by f(xx)=0.6,f(y,x)=
0.6, f,(x,¥)y= f,(y,y)=0. is F-yc. Also. Also
o ={0,034,},0 ={003u}, f,:(4,8) > (,,6") defined by
fila,a)= f(b,a)=041, f,(a,b)= f,(b,b)=0. is F-yc. But
£, % f,1s not F-y continuous.

4. F-y-retracts

Definition 4.1 [9]. Let (p,5,) be a maximal subspace of an
F-ts (2,8) . Then (p,8,) is called an F-strongly semi-retract,
F-semi retract, F-pre retract and F-semi pre retract of
(A,6) ;(briefly F-SSR; F-SR,F-PR,F-SPR) if there exists an F-
strongly semi-continuous, F-semi continuous, F-pre continuous
and F-semi pre continuous (briefly, F-SSC; F-SC,F-PC,F-
SPC)-proper  function  f :(4,6) > (p.5,) such that
flp:id,, ie, f(x)=p(x) Vxe X . In this case f is called
an F-strongly semi-retraction, F-semi retraction, F-pre
retraction and F-semi pre retraction.
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Definition 4.2. Let (p,8,) be a maximal subspace of an F-
ts (A,8). Then (p,5,) is called an F- y -retract of (4,8) ;
briefly F- y -R; if there exists an F- y c¢ proper function
f (4,8 -(p,8,) such that f|p=idp ie.,
f(x)=p(x) VxeX . In this case f 1is called an F- y -
retraction.

Remark 4.1. From the above definitions one may notice
that:

F-SPR

Exampled.1.Let X ={x,y},A=0.6,,6 ={0,x,, v y,,,A} and
p = %, .One can easily verify that (p,§,) is an F-PR and F-y
—-Rof (A,8) but neither an F-SSR nor an F-SR of it.

Example 4.2. Let X ={x,y},A1=04,,6 ={0,x,, V Y500, 4}
and p = x,, .One can easily verify that (p,8,) is an F-SR and

F-y-Rof (4,6) butneither an F-SSR nor an F-PR of it.

Example 4.3. Let X ={x,y},A=0.7,.6 ={0,x,, v ¥,,,0.3,4}
and p = x,, .One can easily verify that (p,§,) is an F-SSR of
(A,6) butnot F-R of it.

Exampled.d.Let X ={x,y,2},A1=0.6,6 ={0,x,, vV ¥, V 203, %o,
V¥,V Z,,,A) and p=x,, .One can easily verify that (p,8,) is
an F-SPR of (4,8) butnot F-y-R of it.

Theorem 4.1. Let f :(4,6)-(p,d,) be a F-proper function
such that f|p=id, . If the graph g:(A,8)—(Axp,8x5,) is
F- y -continuous, then fis a F- y -R.

Remark 4.2, Let f :(4,6)—(p,6,) be a F-proper function
such that f|p=id, If f:(4,8)-(p.9,) is F- 7v-R,
g:(p,8,)—>(0,(8,),)is F-y-R, o<p then gf
be a F--y -R.

is need not

Exampled.5. X ={x,y,2,,4=02,6 ={0.%,V ¥: V2. A}
p=x,Vy, and 6=x, One can easily verify that (p,5,)
is a F -y-R of (1,6) and (0.(d,),) is a F- y-R of (p.6,)

but (0,(8,),) isnotaF-y-Rof (4,5).

Remark 4.3. If (p,8,) isaF-yRof (1,8) and (0.6,)
isaF-y-Rof (u,6) then (pxo,épxﬁ‘,)neednotbeaF-y--
Rof (Axu,6x68).

Example 4.6 Let X ={x,y},1=0.6,,6 ={0,0.1,%,5, V ¥,,-4}

and p=x0.6 ‘ 7Y=(avb}v IJ:M, ’6"={Q’®!Z’}
and ¢ = a,,, . One can easily verify that (p,5,) isaF-7y-Rof
(A,6) and (0,8,) is a F- y-R of (ud) but

(p%0,8,%8,) ismotaF-y-Rof (Axu,6x8).
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