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Abstract

This paper addresses a new blind channel equalization method using fourth-order cumulants of channel inputs and a three-layer
neural network equalizer. The proposed algorithm is robust with respect to the existence of heavy Gaussian noise in a channel
and does not require the minimum-phase characteristic of the channel. The transmitted signals at the receiver are over-sampled to
ensure the channel described by a full-column rank matrix. It changes a single-input/single-output (SISO) finite-impulse response
(FIR) channel to a single-input/multi-output (SIMO) channel. Based on the properties of the fourth-order cumulants of the
over-sampled channel inputs, the iterative algorithm is derived to estimate the deconvolution matrix which makes the overall
transfer matrix transparent, i.e., it can be reduced to the identity matrix by simple recordering and scaling. By using this
estimated deconvolution matrix, which is the inverse of the over-sampled unknown channel, a three-layer neural network equalizer
is implemented at the receiver. In simulation studies, the stochastic version of the proposed algorithm is tested with three-ray
multi-path channels for on-line operation, and its performance is compared with a method based on conventional second-order
statistics. Relatively good results, withe fast convergence speed, are achieved, even when the transmitted symbols are significantly

corrupted with Gaussian noise.
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1. Introduction

In digital communication systems, data symbols are
transmitted at regular intervals. Time dispersion, which is
caused by non-ideal channel frequency response characteristics
cr  muiti-path  transmission, create  inter-symbol
interference (ISI). This has become a limiting factor in many
communication environments. Thus, channel equalization is
necessary and important with respect to ensuring reliable
digital communication links. The conventional approach to
channel equalization needs an initial training period with a
known data sequence to learn the channel characteristics. In
contrast to standard equalization methods, the so-called blind
(or self- recovering) channel equalization method does not
require a training sequence from the transmitter [1]-[3]. It has
two obvious advantages. The first is the bandwidth savings
resulting from elimination of training sequences. The second is
the self-start capability before the communication link is
established or after it experiences an unexpected breakdown.
Because of these advantages, blind channel equalization has
gained practical interest during the last decade.

Recently, blind channel equalization based on second-order
cyclostationary has been receiving increasing interest. The
algorithm presented by Tong et al. [4] is one of the first
subspace-based methods exploiting only second-order statistics
for a system with channel diversity that has a single-input/
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multi-output (SIMO) discrete-time equivalent model. After
their work, a number of different second-order statistical
(SOS) methods have been proposed [5]-[10]. However, it
should be noted that most SOS methods require a relatively
high signal-to-noise ratio (SNR) to achieve reliable
performance. In practice, the performance degradation using
SOS methods is severe if a received signal is significantly
corrupted by noise. In this case, a larger sample size is
necessary [4]. To avoid this problem, higher-order statistics
(HOS) can be exploited. Several recent works have
re-established the robustness of higher-order statistical methods
in channel equalization and identification {11]-[13].

In this study, a new iterative algorithm based on the
fourth-order cumulants of over-sampled channel inputs is
derived to estimate the deconvolution (equalization) matrix
which makes the overall transfer matrix transparent, i.e., it can
be reduced to the identity matrix by simple reordering and
scaling. This solution is chosen so that the fourth-order

statistics of the equalized output sequence {s (%)} is close to
the fourth-order statistics of the channel input sequence
(s(k)y. It has a similar formulation with the cumulant-based
iterative inversion algorithm which was introduced by Cruces
et al. [14] for blind separation of independent source signals,
but the iterative solution in our algorithm is extended with an
additional constraint (a fourth-order statistical relation between
the equalized outputs of over-sampled channels) in order to be
applied to the blind channel equalization problem. In the
experiments, the proposed iterative solution provides more
precise estimates of the deconvolution matrix with fast
convergence speeds than a method based on second-order
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statistics, even when the outputs of a non-minimum phase
channel are corrupted by heavy Gaussian noise. However, this
deconvolution matrix may yield to an amplification of the
noise at the outputs because of noise-corrupted inputs, even
though it can be precisely estimated from the noisy channel
outputs. To avoid this limitation, a three-layer neural equalizer,
instead of the deconvolution matrix itself, is implemented at
the receiver by using the over-samplied channel matrix (inverse
of estimated deconvolution matrix)., It is known that the
equalizer made of neural network structure has a better
noise-tolerant characteristic [15]-[17].

This paper is organized as follows: A brief summary of the
problem formulation for blind channel equalization is
presented in Section 2, the proposed iterative algorithm
presented in Section 3, the structure of three-layer neural
equalizer in Section 4, extensive computer simulations,
including the comparisons with an approach based on
second-order statistics, and our conclusions in Section 5 and
6, respectively.

2. Problem fomulation

In a multi-path digital communication system, a data
sequence (s(k)), k=-,-1012,, is sent over a
communication channel with a time interval 7. The channel is
characterized by a continuous function h(¢), and the signals
may be corrupted by noise e(z). The received signal y(z) can
be expressed as:

o
2(t) = Ss (k)h(t—kT) (1)
z(t) =z(t) +e(t) )
efl)
T "y W e ity
sty ,bnknov’:; )chnnnel b Sumpling | —|  Equalizer  |—»
| U |

Fig.1. Blind channel equalization in digital communication.

This is shown in Fig. 1. The objective of blind equalization
is to recover the transmitted input symbol sequence {s (%)}
given only the received signal y(z). Instead of choosing the
equalizer so that the equalized output sequence {:9 (k)Y is
close to the source symbol sequence {s(k)}, as in the
standard equalization formulation, in blind equalization one
chooses the equalizer so that the statistics of the equalized
output sequence is close to the statistics of the source symbol
sequence. In this study, a robust algorithm with respect to
noise is constructed with a higher-order statistical constraint,
which makes the fourth-order statistics of {s (%)} close fo
the fourth-order statistics of {s (k)}. For this approach, the
following assumption is necessary.
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1>The symbol interval T is known and is an integer
multiple of the sampling period.

2>The impulse response h(t) has finite support, if the
duration of A(t) is L, h(t)=0 for t < 0or t = L,

3>{s (k) }is zero mean, and is driven from a set of i.i.d.
random vaiables, which means the fourth-order zero-lag
cumulant or kurtosis of {s (%) }can be expressed by

Cirnenr O =cum( s(k),s(1), (D, s(1)=
E{s(k)s™* (I)s(l)s * (1) y=ad (k—1) (3

where < is non-zero constant and (%) is the discrete
time impulse function.
4>e(t) is zero-mean Gaussian noise, and uncorrelated with

(s(k)}.

In the conventional equalizer, the incoming signal at the
receiver y(¢) is spaced at the reciprocal of the transmitted
symbol interval 7. However, in this study, the over-sampling
technique is applied to change a finite-impulse response (FIR)
channel to a SIMO channel, which requires the incoming
signal y(z) to be sampled at least as fast as the Nyquist rate.
This is illustrated by way of an example shown in Fig. 2,
where the channel lasts for 4 adjacent bauds, and the
over-sampling rate is T/4.

k-4 k-3 k-2 k-1 k k+1  k+2 T
et —
s +1 +1 -1 -1 +1

N
»o (k)

Yo (k)

A Ohu(l)

1 BY0) HD
MO h(l) h(2) h(3)

+

Fig. 2. An over-sampling example of a FIR channel.

With over-sampling at rate 7/4 during observation interval
L=T in Fig. 2, a channel output vector at time index k is
given by equation (4). If we define a FIR channel A(z) as in
equation (5), yo(k) and yi(k) can be expressed as in equations
(6) and (7), respectively. In the same way, yxk) and ys(k)
can be obtained.

Y()=[yo(K),yitk),y=(k),ys(k)]" o
RO)=[ho(0),hi(0),h0),h(0)]" 5)

yo(k)=ho( 0)s(k )+ho(1)s(k=1)+ho(2)s(k-2)+ho(3)s(k-3)+eo(k)
6)

yi(k)=h(O)s(k)+hu(1)s(k-1 )+ hi(2)s(k-2)+hu(3)s(k-3)+es(k)
(7)
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Then we have

y(k)=Hs(k)+e(k) 8

where s(k)=[s(k),s(k-1),s(k-2),s(k-3)]T, e(k)=[eo(k).e (k). exk)
ek)])" and

h(0) ho(1) ho(2) ho(3)
H- i) i) m el - o2 ©
ha(0) ha(1) hy(2) ha(3)

If the observation interval L is greater than T, for example
L=2T in Fig. 2, y(k)=lyok), yi(k), ya(k), ys(k), ydk), ys(k),
Y6(k), yk)1', s(k)=ls(k+1), s(k), s(k-1), s(k-2), s(k-3)1", e(k)=
[e”(k), el(k), ez(k), e;(k), el(k), es(k), e (k), 37(k)]T,
and H becomes as a 8X5 channel matrix shown in equation
(10).

_ [0.1(0), h(1), 1(2), R (3)
T | B0, (D, R(2),R(3),0

where 0=[0,0,0,01".

In our approach to recover the transmitted input symbol
sequence {s (%)}, a deconvolution matrix G in equation (11)
is derived to transform the overall transfer function W=GH
into the identity matrix by using the observed channel output
y(k) only. For the solvability of blind equalization problem,
an additional assumption is made throughout, ie., the
over-sampling rate 7/N or the length of the observation
interval L, g7, is selected to make the over-sampled channel
matrix H full column rank. This means if a channel A(t) has p
taps, H can described by a NgX(p+g-1) matrix, and N or ¢
should be chosen for Ng>(p+q-1)

$(k) = Gy(Ic)=GHs(k)=Ws(k) (1)

3. Iterative solution based on fourth-order
cumulants

The aim in blind equalization is to select G in equation

(11) that recovers the original source sequence {s(k)} only
from the observations of the sampled channel output y(k). This
is obtainable when the overall transfer system W is transparent
(or reduced to an identity). Here, for notational simplicity, we
consider a special reordering and scaling so that W will
always be an identity matrix. If the over-sampled channel &
is a NgX(p+g-1) matrix and full column rank, its input
saquences can be expressed as in equation (12).

S pigo2 s(p+q-2) s(p+g-1) A s(M-1)
M M M A
$ so || s 5@ A s-prg-2)] 1P
S 5(0) s(h A sS(M~(p+q-1)

where M is the total number of transmitted sequences and

$¢:51:A 185,02 are the shifted input vectors by time interval T
for each of p+g-1 over-sampled FIR channels. Then, for the
noise-free case, equation (11) can be rewritten as

s s

prg-2 ptg-2

R M M

§={ . |-GH =Ws (13)
S 5y
o o

The identifiability of system W can be guaranteed because
the channel H has full column rank and its input vectors,
Equation (13)
can be considered as a blind source separation (BSS) problem.
If we properly scale channel input s such that the kurtosis of

S0s8157A +8 g2, are mutually independent [18].

each of 505154 8,0 s equal to +1 or -1 (scaled to
@ =1 in equation (3)), its BSS solution by using a
preconditioned iteration [19], is given by equation (14) [14].

G(n+1) =G(n) _um)(CIJ

§i.81

O8;-DG™ (1)

Cslkas, (0)=Cum(§k'§l’§l’§l)=E{§k§:§l§;}l the
fourth-order zero-lag cumulant or kurtosis matrix of §(kI=0,
1,--p+g-2), S:=diag(sign(diag( C;5©)) in the Matlab
convention, M =a step-size of iteration, and I is an identity
matrix. The fundamental idea of this solution is based on the

where

fact that the fourth-order statistics of equalizer output §
should be close enough to the fourth-order statistics of
channel input s. However, in order to apply the BSS method
in equation (14) to the blind channel equalization problem, an
additional constraint must be considered. It is as follows.

The channel input § =[$pg-2-A 51501 s constructed by
shifting the same sequences with a time interval 7, which is
shown in equation (12). It means the fourth-order cumulant
matrix of s with lag 1 always satisfies the following
expression

C.LWI7S, =17 (15)

where Cae O zcum(Sk>S o814 11 )=E{sks7+lsl+ls;+l}, J
is a shifting matrix denoted by equation (16), and S:J

=diag(sign(diag( C:k i, mJ’ D).

00 A 00

10A 00
J=[0 1 A 0 0

MMM MM

00 A 1 0 1o

Thus, the fourth-order cumulant matrix of equalizer output

§ with lag 1 should be forced to satisfy equation (15), and
its iterative solution can be written as

15
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(n+l) _ gx(n) _ 2(n) 1.3
G" =G" -B"(C

S8y

T @3 T g1 (n)
WIS, -JITG™ (g
where B=a step-size of iteration. Based on the above
analysis, a new iterative solution combining equation (14) with
equation (17) is derived for blind channel equalization, which
is shown in equation (18).
G (n+l) _ G tn) _ 'u("J(C.I'B. (O)S~3 _ I)G (n)
—BC, (VIS =TI THG™ (19
If the formulation of equation (18) is based on the
second-order statistics of equalizer output and the channel
input s is scaled to have a unity power, the iterative solution
is reduced as

G(n+l) = G(n) _lutn)(cl.l

5¢.5

-y

$e08

(0) _I)G(n)

mJ" =-JIHG™ (19

where  Ci's O =cym($i.$, )=E{§k§; }oand € O=cum

( Sko8 1 )=E{§k§f+1}: zero-lag and lag 1 correlation function

of §, respectively. These two iterative solutions have been
implemented in a batch manner in order to obtain an accurate
comparison, and tested with three-ray multi-path channels. In
our experiments, their stochastic versions, which are shown in
equation (20) for the fourth-order statistics and in equation
(21) for the second-order statistics, are evaluated for possible
use on-line. These are accomplished by estimating
continuously the fourth-order cumulants in equation (18) and
the second-order correlations in equation (19) with the
over-sampled channel outputs coming in at time interval T.
Thus, G gets updated at time interval T. By applying these
stochastic versions of algorithmn, it is not necessary to wait
until a whole block of the sample is received to estimate G.
The stochastic version based on second-order statistics in
equation (21) is the same as the one used by Fang et al. [5]
for their two-layer neural network equalizer. It is compared
with our proposed algorithm based on the fourth-order
statistics shown in equation (20).

G(n+l) =G(n) _‘uv(n)(j-(gsml))(§:n—l))TS;§ __I)G(n)
_ﬁ(n)(‘f(g‘:n))(&\jn—l))TJTS;] —JJT)G(") (20)
G(n+l) =G(n) _p(n)(s;{n—l)(s:fn—l))T _I)G(n)

ﬂﬁ(n)(s,‘:n)(s;:n—l))TJT _JJTx;(n) (21)

aln) __raln) an) AT
s =[5 A5, 50T.

where i prq-2° a (p+g-DX1 output

a(m)y _ ra(n)y3 on) o2 2
vector of G, fGE")=@E") -3§"0; 0. adaptively

. 3
estimated power of Si at Sy

diag(sign(diag(f 8""HE™™™™))  and
S}, - diag (sign(diag (f S XS ™)' TT))

each

iteration,
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4. Neural network-based equalizer

In the absence of noise, the deconvolution matrix G
perfectly recovers the source symbols at the output because of
the overall transfer function W=GH=I. However, when there is
noise, this deconvolution matrix may yield to an amplification
of the noise at its outputs, even though it can be precisely
estimated from the noisy channel outputs y by using our
proposed algorithm. To avoid this limitation, a three-layer
neural equalizer is employed at the receiver because of its
noise robust characteristic [15]-[17). This is done by using
the estimated over-sampled channel as a reference system to
train the neural equalizer. It consists of an input layer, a
hidden layer, and an output layer of processing elements
called neurons [15][16], as shown in Fig. 3.

input layer hidden layer output layer

Fig. 3. The structure of three-layer neural equalizer.

Once the deconvolution matrix G is estimated, which means
the over-sampled channel H is available, the training
sequences based on H are generated at the receiver. The
three-layer neural equalizer is trained with these sequences by
using the back-propagation algorithm. In back-propagation,
the output value is compared with the desired output. This
results in the generation of an error signal, which is fed back
through layers in the network, and the weights are adjusted to
minimize the error. More details on the back-propagation
algorithm can be found in [15][16]. A sample of equalized
binary (+1,-1) source symbols under 15dB SNR by this neural
equalizer, one by the deconvolution matrix G itself, and one

do s e s B e @ s wm Y an su % wa e 6o ns o we e

Fig. 4. Samples of received and equalized symbols under 15db

SNR: (a) 1000 received symbols, (b) equalization by a neural

equalizer, (c) by G itself derived from eq. (20), and (d) by the
optimal inverse of H.
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by the optimal inverse of over-sampled channel H are shown
in Fig. 4. The deconvolution matrix G used in Fig. 4 is
derived from the proposed algorithm in equation (20). The
outputs of neural equalizer can be more densely placed onto
the transmitted symbols (+1,-1) even in heavy noise
environments.

5. Simulation resuits and performance
assessments

The blind equalizations with three-ray multi-path channels
are taken into account to show the effectiveness of the
proposed algorithm. Performances under different SNRs, varied
from 5 to 15dB with 2.5 dB increments, are averaged after 50
independent simulations. The proposed algorithm and the
solution based on the second-order statistics are implemented
in a batch manner in order to achieve the accurate
comparison. In the first experiment, a three-ray multi-path
channel truncated up to 2 symbol periods (p=2) is tested with
1000 randomly generated binary transmitted symbols (taken

from {i 1}). The delays of this channel are 0.5T and 1.17, and
its waveform is a raised-cosine pulse with 11% roll-off. It has
2 zero outside unit circle, which indicates a non-minimum
phase characteristic. The channel outputs are sampled twice as
fast as the symbol rate, which means the over-sampling rate is
772 (N=2), and the observation interval used for this channel
is T (g=1). Thus, the over-sampled channel H becomes a 2x2
(Ngx(p+q-1)) matrix. For each simulation, the initial matrix

for G and both of step size(/-‘,ﬂ ) in equations (20) and (21)
are set to an identity matrix I and 0.001, respectively, and the
numbers of iteration is limited to 50 epochs. The normalized
root-mean square error for overall transfer system W=GH is
measured in terms of the index NRMSE,,

A OET
NRMSEW—”I” NSZ:,HW” 1 (22)

where W =G'"H is the estimation of overall system at
.th

the j© simulation and NS is the number of independent

A o proposd mthod

sweand-order statistics

ES
€

5 6 7 8 S 1 12 13 14 15

10
SR

Fig. 5. NRMSE, with different SNR levels in experiment 1.

simulations (NS=50 in this study). The NRMSE, for the
proposed algorithm and the one based on second-order
statistics are shown in Fig. 5 with different noise levels, and
their averaged convergences within 50 epochs for 5 dB and
15dB SNR are demonstrated in Figs. 6 and 7, respectively.

praposed method

second-arder statistics

025+

02— e e e L P
0 5 10 15 20 25 30 35 40 45 50
tteraticns

—

Fig. 6. NRMSE,, vs. iterations for 5 dB SNR in experiment

R \ -~ proposed method

5 \
Soose second-order satistics
4
Z

- N - . L '
0 5 10 15 20 25 30 35 40 45 50
Iterations

Fig. 7. NRMSE, vs. iterations for 15 dB SNR in experiment 1

Once G is available, the three-layer neural equalizer is
trained with 1000 training sequences which have been
generated at the receiver. It has 2 inputs, 4 hidden neurons
and 2 outputs, and the learning rate is set to 0.05. The
maximum number of iterations for the training process is set
to 50 epochs. A portion of the mean-square-error for training
is shown in Fig. 8. The output of this neural equalizer is the

estimation of transmitted symbols, and its performance
measure is defined as follows.
1 1 NS L 9
NRMSE, =— |—"[§" ]
Is|| | NS (23)

where §' is the estimate of the channel input s at the j'h
trial. The NRMSE, by the neural equalizer with the proposed
algorithm and with the one based on second-order statistics
are shown in Fig. 9, and their bit error rates (BER) are
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compared in Fig. 10.
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Fig. 8. A mean square error of neural equalizer in training
procedure.
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Fig. 9. NRMSE, with different SNR levels in experiment 1.
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Fig. 10. Averaged BER(%) in experiment 1.

In the second experiment, the same simulation environment

is used, such as the step size( ﬂaﬁ ), the learning rate for the
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neural equalizer, the maximum number of iterations, and the
over-sampling rate (N=2). The exceptions are the length of
channel, its delays and the observation interval. The three-ray
mult-path channel tested at this time is truncated up to 3
symbol periods (p=3), and its delays are T and 1.57. Tt has
one zero outside unit circle and the other inside. The
observation interval used for this non-minimum phase channel
is two times longer than one symbol period, 2T (g=2), and
thus, the over-sampled channel H becomes a 4x4 (NgX
(p+g-1)) matrix. The neural equalizer used to recover the
transmitted symbols in this experiment has 4 inputs, 8 neurons
in the hidden layer, and 4 outputs. The performance measures,
NRMSE,,, NRMSE;, after 50 independent simulations, and the
averaged BER, are presented in Figs. 11-13, respectively.
From the simulation results for NRMSE, which are shown
in Fig. 5 for experiment 1 and in Fig. 11 for experiment 2,
the proposed solution is proved highly effective to estimate G,
the inverse of unknown channel H, which makes the overall
system W=GH an identity even when the observed symbols
are heavily corrupted by noise. The difference in performance
between the proposed solution and the one based on the

07— T T T
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04r
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Fig. 12. NRMSE; with different SNR levels in experiment 2.
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Fig. 13. Averaged BER(%) in experiment 2.

second-order statistics is not severe if the noise(signal) level is
as low(high) as 15dB SNR in our experiments. However, it is
observed that, if the noise level is getting higher such as to
10 or 5 db SNR, the proposed algorithm performs relatively
well, and the performance difference becomes more serious. It
results from the fact that our approach is based on the
fourth-order cumulant of the received symbols and it always
goes to zero for Gaussian noise. This phenomenon can also be
found for NRMSE, in Figs. 9 and 12, and the averaged BER
in Figs. 10 and 13, because the neural equalizer trained with
more accurate estimation of H produces the lower symbol
estimation error. Therefore, the proposed algorithm in our
study can be implemented for on-line operation in a heavy
noise communication environment.

6. Conclusions

In this paper, a new iterative solution based on the
fourth-order cumulants of over-sampled channel inputs is
presented for blind channel equalization. It does not require
the minimum phase characteristic, and shows relatively high
performance results even when the observed symbols are
significantly corrupted by Gaussian noise. In addition, it can
be implemented for on-line operation for channel estimation
without waiting for a whole block of the symbols. The
proposed algorithm could possibly be used for heavy noise
communication environments. In future work, the proposed
iterative solution will be further investigated and applied as a
learning algorithm for a neural network so that the transmitted
symbols can be directly recovered from the output of a
neural-based equalizer without the estimation procedure of the
deconvolution matrix, G.
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