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PERFORMANCE OF TWO DIFFERENT HIGH-ACCURACY UPWIND
SCHEMES IN INVISCID COMPRESSIBLE FLOW FIELDS

R. Hosseini'", M.H. Rahimian® and M. Mirzaei’

Performance of first, second and third order accurate methods for calculation of inviscid fluxes in fluid
[flow governing equations are investigated here. For the purpose, an upwind method based on Roe’s scheme
is used to solve 2-dimensional Euler equations. To increase the accuracy of the method two different schemes
are applied. The first one is a second and third order upwind-based algorithm with the MUSCL
extrapolation Van Leer (1979), based on primitive variables. The other one is an upwind-based algorithm
with the Chakravarthy extrapolation to the fluxes of mass, momentum and energy. The results show that the
thickness of shock layer in the third order accuracy is less than its value in second order. Moreover, applying
limiter eliminates the oscillations near the shock while increases the thickness of shock layer especially in

MUSCL method using Van Albada limiter.
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1. INTRODUCTION

The history of numerical techniques for the
resolution of inviscid Euler equations goes back to
the early 1950s, with the first order method of
Courant et al.[1], and Lax and Friedrichs.[2] The
second order accurate Lax-Wendroff has led to a
whole family of variants when applied to non-linear
systems.[3] MacCormack method was one of the
most popular of these variants.[4] Space-centered
schemes of second order accuracy in space where
initially introduced with implicit linear multi-step
time integration methods by Brily and McDonald,
[5] and Beam and Warming.[6] Due to the
unwanted oscillations that are created in central
algorithms, upwind schemes were introduced to
prevent these oscillations. The first explicit upwind
scheme was introduced by Courant et al. (1952).[1]
Steger and Warming[7] and Van Leer[8] introduced

the flux vector splitting as member of upwind group.
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The other subgroup of this method was introduced
by Godonov (1959)[9] which is based on the exact
solution of Reimann problem. This most original
approach has generated a series of schemes that
mtroduce different approximation Reimann solver.
The most important solution of these schemes has
been introduced by Osher, 1982[10]; Roe,
1981.[11] In this paper the upwind Roe’s scheme
has been used to solve two-dimensional Euler
equation in curvilinear coordinate system. To
increase the accuracy of the results Chakravarthy
and MUSCL methods have been used for extra-
polation of properties. To prevent the generation of
oscillations near discontinuitics Minmod or Van
Albada limiters are used in the above methods.

2. GOVERNING EQUATIONS

The governing equations of fluid motion for two-
dimensional, unsteady, compressible flow in full
conservative form with no body force can be
written as[12]:

90 [ 0F OF (1
o8& on

where Q, solution vector, and E,F, inviscid flux
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Fig. 1 The cell face value L is determined

by the first order upwinding[13]

vectorsin &,n directions respectively, are:

F= [r]xE+77yF] (2)

Q,E, and F are:

O=lp m p ET
E=[pu pu'+p puv
F=[pv pwv p’+p

(E,+pul"
(E, +pV]"

and p,p,u,v,E, are density, pressure, x- and y-

velocity component, and the total energy per unit
volume, respectively. For a calorically perfect gas,
pressure is estimated by the equation of state:

p=p—De

where y is the ratio of specific heats.

3. DISCRETIZATION

The governing equations are discretized in a
structural grid using finite volume technique and
for time discretization, a simple explicit scheme is
applied. The discretized form of the equations in a
computational cell is as follow:

',;l—g':/' =E:%,j'_giz,j E","j+,_F:j—z =0 (3)

Fig. 2 The cell face value L is determined
by the second order upwinding[13]

4. Numerical Method

As stated previously, in this study upwind Roe’s
scheme is used to solve two-dimensional inviscid
Euler equations. The flow conditions (L) and (R) at
the cell interface (E) can be determined in
accordance with the degree of accuracy and type of
scheme.

The first order upwind algorithm suggests that:

L R
dr =9 de =9k
where q is a typical primitive variable, ie.
ge{p,p,u,v}. For the first order extrapolation a
zero-polynomial (a straight flat line) is used to

extrapolate the primitive variable q at node (j k) to
the cell face E. (Fig. 1)

4.1 MUSCL METHOD

In this computation a second and third order
algorithm with the extrapolation strategy of Van
Leer (1979)[14], is applied to primitive variables
pressure (p), velocity components (u,v) and
temperature (T), in order to obtain the inner (L) and
outer (R) flow conditions.

Second order upwinding recommends:

q,? =4k + ¥ Apq
qg =4k —} A

where Ayq and Aggq are the jump of a primitive

variable at the west and east face of the control
volume, i.e.
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Fig. 3 The cell face value L as determined by
the third order upwind-biased extrapolation[13]

Ayq = (qj,k —q,14)
Apq = (qj+2,k ~q1x)

For the second order extrapolation a first-order
polynomial, ie. a straight line, is used to
extrapolate the primitive variable q from the nodes
(-1,k) and (j,k) to the cell face E, as shown in Fig,
2

A third order upwind-biased algorithm proposes:

95 = 4;, + KWA=©)A,q+ 1+ k)Aq],
qf; =9k = AlA=k)A g+ 1+ kA q]

where £ =} and Agg= ik ~ 4951

It is noted that for the third order extrapolation a
second-order polynomial, i.e. a parabola, is used as
shown in Fig. 3. That is a second order polynomial
curve fit between the points (j-1,k), j,k) and (j+1,k)
used to obtain g .

Van Albada limiter-In the higher order methods,
i.e. higher than first order accurate cases, the
solution is not necessarily monotonous and non-
physical oscillations are produced, which must be
damped. To damp the numerical oscillations, in the
current computations, the Van Albada et. al. flux
limiter (1982)[15], is applied. The approach as
implemented here is:

gl=gq,,+ %[(1 KA g+ 1+ KA q]

F =g, —%[(1 —B)A g + (1 F)ALq]

where ¢ is the limiter function, which is a function
of forward- and backward-differences, as defined
by:

4, = 2(Apg)Agq) + €

k=

’ (AWQ)2 + (AEQ)2 +é

and e is a small number which prevents

indeterminacy in regions of uniform flow, i.e. in
region (A,q)=(A.q)=0.

4.2 CHAKRAVARTHY METHOD

In this method, a family of scheme is presented
based on the preprocessing approach.[16] Some
convenient variables are now defined as an
intermediate step before defining the numerical flux
corresponding to a high-accuracy TVD scheme.
First, parameters denoted as o are defined. These
provide a measure of the change in dependent
variables across the corresponding wave family and
therefore measure the slope between neighboring
states. In the following, the superscript i
corresponds, as usual, to the ith eigenvalue and ith
eigenvector. The subscripts 1-3 are just labels to
differentiate between the three different types of «
parameters[17].

ali,m+% = lrln+}é (Qm - Qm—l)
a;,m+}§ = lrln+% (Qm+l - Qm)
a;,m«}-% = lrln+}é (Qm+2 - Qm+l)
where | is the orthonormal set of left eigenvector

corresponding to a cell face. Next, the slope-limited
values are defined by:

=i o i i

a, .y = min mod[al’m%,baz’m%]

~i . i i

Oy iy = mlnmod[az’m %,boc,,m+ %]

=i o i i

&y oy = minmodfe, .., bar; ., ]

~

) _ : i i
a3,m+}é =min mOd[a3,m+% ’ba2,m+%]

In the above, the compression parameter b is to
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a. Grid configuration over a bump

g. 3rd order MUSCL with limiter

h. 3rd order Chakravarthy with limiter

Fig. 4 Pressure contours of supersonic flow over a bump with inlet Mach number of 1.65

be taken as the following function of the accuracy
parameter ¢, which is explained shortly.

b=@-¢9)/(1-¢)

The Minmod slope-limiter operator is[14]:

Mimmod[x,y]= Sign(x) max[0,min {]x],ysign(x)}]

In equations (2), numerical fluxes E,F were
introduced. Based on the concise notation of using f to
represent cither E or F, let us use f to denote the
numerical fluxes E or F. A family of TVD schemes
can be written down as follows in terms of the
previously defined o parameters (with the subscript
m+ Y dropped from these for convenience):
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Fig. 6 Distribution of Mach number along
the middle line of channel(Y=0.5)
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where A,r are eigenvalue and right eigenvector,

respectively.

The first term on the right-hand side of equation
(5) defines a first-order numerical flux and is
constructed from:

hm+% = %[f(Qm%st%)
£ (@ Ny )] ©

- % [z (//i’,r:+y m+}/ )aZ m+}/ ]
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Fig. 7 Distribution of Mach number on
the lower wall in different accuracy
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Fig. 8 Residuals history

The parameter ¢ defines schemes of varying

accuracy. The notations @' and o' have been
used to define slope-limited values of the «
parameters. If these are replaced by their unlimited
values, the truncation error of the resulting schemes
(in one-dimensional steady-state problems on
uniform grids) is given by:

—1 3
75 = -2~ 2y L92

4 00 ox

Here, the truncation error refers to the difference
between the centroidal value of the numerical
solution and the average value of the exact solution
in that cell. The choice of @#=1/3 results in a TVD
scheme based on an underlying third-order scheme.
The choice of @=-1 results in a TVD scheme
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Fig. 9 Pressure contours in unstructured adaptive mesh refinement domain[18]
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Fig. 10 Pressure contours in structured mesh with 3rd order Chakravarthy method

based on the fully upwind second-order-accurate
formulation.

5. RESULTS AND DISCUSSION

To indicate performance of the presented
schemes, two various test cases are analyzed. The
first test case is a supersonic inviscid flow with
Mach number of 1.65 over a 4% bump and second
one is a supersonic flow with Mach number of 2.0
over a 10-degree compression corner.

To show the reliability of the code, Mach number
distribution along the bottom wall of the bump
domain for 21x61, 31x91, 51x151 and 61x181 grids

are compared and grid independency of the code is
achieved (Fig. 5). The code is run on a 1.5 GHz.
Pentium 4 computer and run time for 51 x 151 grids
is about 20 minutes.

The results of the test cases are shown in Figs. 4
to 11. For the first case Fig. 4-a shows 51x151
grids in physical domain. The pressure contours in
the domain for first, second and third order
accurate methods are indicated in Figs. 4-b to 4-h
by using MUSCL and Chakravarthy extrapolation.
As seen in Fig. 4-b, the first order accuracy
method cannot capture the shocks accurately and
especially the reflections while in the second and
third order (Figs. 1-c to 1-f) the discontinuities are
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Fig 11 Pressure distribution on the lower
wall of compression corner

captured completely. Comparison of Figs. 4-c, 4-d
with Figs. 4-e, 4-f, shows that the third order
accuracy shock layer thickness is less than its

value in second order. Also, the comparison of Fig.

4-¢ and 4-g, represents applying limiter eliminates
the oscillations near the shock while increases the
thickness of shock layer in both methods. Of
course, the increase in MUSCL scheme is
noticeable but in Chakravarthy method is almost
negligible.

It is needed to explain that, Chakraverthy method
uses extrapolation of the convective fluxes.
Obviously, convective fluxes are variation of
primitive variables. Near discontinuities, oscilla-
tions of variables increase and it causes increase in
total variation of primitive variables. Minmod
limiter controls the slope of the variables to
eliminate oscillations near discontinuities. The
elimination of oscillations does not change the
thickness of the shock. In MUSCL method,
extrapolation of primitive variables, instead of their
variations, is used to obtain variables at the cell
surface. In this method oscillations appear near
discontinuities too. By using Van Albada limiter it
is to eliminate these oscillations. Van Albada
limiter uses a weighting function equation, for
extrapolation of primitive variables at the left and
right of the cell surface.

In Fig. 6, distribution of Mach number along the
middle of channel (Y=0.5) is shown. As it was
anticipated, contrary to the first order method that
couldn’t capture reflected shock precisely, the third
order schemes captured reflection of the shock
perfectly. The profile of Mach number on the lower

wall of the duct with the same geometry is
indicated in Fig. 7. First, second and third order
accuracies in the above methods are compared and
the results shows a highly conformity with those of
literature. The residuals of the methods are shown
in the Fig. 8. It is seen that the residuals drop to
machine accuracy.

The second test case geometry, a compression
corner, is indicated in Fig. 9 and 10. The pressure
contours of a supersonic flow in an unstructured
flow field are shown in Fig. 9 using adaptive mesh
refinement method (AMD)[18], while Fig. 10
presents the contours in a structure flow field
applying Chakravarthy method.

The profile of pressure coefficient at the lower
wall of a compression corner is plotted in Fig. 11,
using Chakraverthy and MUSCL methods with
Mach number of 2.0. As observed the results are
well agreed with those of AMD. It seems that,
Chakravarthy method with or without limiter, in
comparison with MUSCL scheme, not only have
better shock capturing capability, but also have a
superior pressure and Mach number profile, in this
Mach number limit.

6. CONCLUSIONS

In the above study Roe’s upwind algorithm is
used to solve two-dimensional Euler equations in a
supersonic compressible flow field. Two different
high-accuracy extrapolations, Chakravarthy and
MUSCL, are applied to increase the accuracy of the
method. The results show that unlike the first order
accuracy method, the second and third order
accuracy schemes can capture the shock and its
reflection perfectly. Comparison of the outcomes
indicate the Chakravarthy method have a better
ability of shock capturing than MUSCL scheme
especially when the limiters are applied.
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