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PARALLEL ALGORITHMS FOR INTEGRATION OF NAVIER-STOKES
EQUATIONS BASED ON THE ITERATIVE SPACE-MARCHING METHOD

Leonid I. Skurin'

This research is based on the iterative space-marching method for incompressible and compressible
Navier-Stokes equations[1-4]. A principle of parallel computational schemes construction for steady and
unsteady problems is suggested. It is analytically proven that convergence of these schemes is unconditional
for incompressible case. When the parallel scheme is used the total volume of computations is the sum of a
large number of independent and equal parts. Estimation of the speed-up K shows that K>1000 in ideal case.
First results of using the parallel schemes are presented.

1. INTRDUCTION

Now there exist a number of methods for solving
Navier-Stokes equations that use advantages of
supercomputers. Methods that are based on
computational schemes that can be realized using a
parallel algorithm are very effective. However
existing computational schemes of this type are
applicable only to a limited range of problems. This
can be seen from a large number of papers presented
in recent years (see proceedings of the conferences
in[3,5,6]).

The iterative space-marching method (IMM) for
solving compressible and incompressible Navier-
Stokes equations is highly universal and is based on
a simple scheme[l-4] (see also the following
section). Therefore it is important to build a parallel
algorithm based on this method and substantiate its
qualities analytically and numerically. This problem
is considered in the present paper.

Here we construct parallel computational
schemes in the IMM framework for steady and
unsteady problems. We perform an analytical re-
search of convergence of these schemes for 3D
problems. Based on these schemes (for any
problem) computations of the single algebraic
procedure of the IMM (see following section) in
each marching station on any Gl can be performed
simultaneously on different processors. Thus,
realizing these schemes on a supercomputer or a
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cluster can significantly decrease computational
time for any problem.

2. SUMMARY OF THE IMM

The iterative space-marching method for
incompressible and compressible full Navier-Stokes
equations has been developed in recent years (in
works [1-4] and others).

First, we give a review of the mathematical
formalization of the IMM. In 2D case one of the
coordinate axes (let it be x ) is declared a marching
axis. The pressure p gradient in the projection of
the motion equation on this axis is expressed in the
following form:

dp/ox = (1+ £)0 plox — edplox, (1)

where £ is a given value (as arule £ =1), ; is a

given function being refined through the computa-
tional process. The Navier-Stokes equations are
presented in finite-difference forms and an iterative
loop based on marching sweeps - a global iteration

(GI), is constructed. Function p for the s-th GI is
calculated using the following relation:

P =0-0p +rp, @)

where 7 is a parameter of the scheme (as a rule
7 =1). The objective of the GI is to achieve the
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equality between p and p (with a given level of

accuracy):

P -p’<ep <<, 3)

When this condition is met the transformation (1)
becomes trivial for all £ and thus solving the
steady problem is completed, or in the case of an
unsteady problem, one time step is completed.

In case of 3D problems (see sketch of the grid
in Fig. 1) two coordinate axes are declared
marching axes. Therefore, 3D problems are solved
by making multiple successive computations of 2D
domains (global iteration) and within each 2D
domain the computation is performed using
marching sweeps[1,3,4].

1D problems are solved by making multiple
successive computations of grid functions at each
point of a single space axis.

Thus, we see that a single algebraic procedure is
used for solving all problems. This is the procedure
of finding the vector of unknown grid functions
along the transverse lines.

It is important to emphasize that the original
computational schemes of the IMM are a marching
schemes. No splitting is used. Any computational
scheme for incompressible fluid is a special case of
compressible one at zero Mach number. The
computational schemes do not contain any varied
artificial constants or functions.

Analytical research of the marching sweeps
stability and convergence in GI was performed for
incompressible fluid using first order finite
-difference approximations for first marching
derivatives. It was proven (using a linear approach)
that stability and convergence are unconditional[4]

(see also references in[3]).

Numerical solutions of various problems were
obtained. We considered motions of homogeneous
and non-homogeneous medias (stratified, two-
phase, turbulent), swirled flows and flows with
large separated and recirculation regions (wake for a
body, vortex tube, vortex pair, Taylor’s vortexes
and others). The computations were based on
conservative form of equations and second order
approximations of the marching derivatives. This
computational research showed that the IMM is
robust at a wide ranges of Mach number (from zero
to hypersonic values) and Reynolds number (from
values much less than 1 to "turbulent values") as
well as for problems without main flow direction
where second order marching derivatives play a
significant role.

Thus the IMM is universal and simple. A
modified scheme[2 - 4] of the IMM is efficient for
steady problems. It is based on the principle of
convergence in time to a steady state. It does not
require meeting condition (3) at each temporal layer
and values & and 7 in (1) and (2) are equal one
for this scheme. As a result each time step is realized
with one GL

For solving unsteady problems the general
scheme[2 - 4] of the IMM is used. In this case the
solution at each temporal layer is found using GI up
to convergence (until (3) is met).

3. STEADY PROBLEM

We construct parallel schemes for steady
problems in framework of the modified scheme. In
order to formulate a parallel scheme we change
finite difference approximations of derivatives for
velocity vector projections. Namely, approximations
of first derivatives for the each projection f with

respect to each marching coordinate X we write as
follows

O _Lim ~ f o _ i~ S N Siom = Froma @
ox Ax Ax Ax ’

where Ax - step along axis x,o,k - numbers of

nodes along marching axes x and z respectively,
j -anumber of a node along transverse line, m -a

number of a temporal layer.
It can be seen that first equality in (4) is an
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approximation of the derivative given time
convergence. The presence of the second term in the
right-hand side of (4) makes this approximation

different from a similar one for the modified scheme.

Approximations of the second marching derivatives
are changed in a similar way.

These changes lead to following schemes for
incompressible 3D Navier-Stokes equations written
in Cartesian coordinates and with “frozen”
coefficients (see Fig. 1):
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where

S, =L+, 5, -1-5,,
20 Jul

T,=2 0+, T,=1-T,
27wl

u,v,w - the projection of the velocity vector on

axes x,y,z, Re - Reynolds number.

This scheme differs from the modified one in that
the values of the grid functions with indexes
(o —1) or (k—1) have index (m —1) (not m, asin
the modified scheme). The modified scheme is
realized with a marching sweep at each temporal
layer, in other words by means of finding solutions
successively at lines (=23 7-1 of planes
o =2,3,..,N -1 respectively, where N +1 - the
number of computational planes in 3D domain,
L+1 - the number of the transverse lines in each
plane. As opposed to that, finding solutions at all
transverse lines ( o,k ) using system (5) does not
require a specific order of steps and therefore may
be achieved with a parallel algorithm. However it is
important to investigate whether this scheme has
time stability.

Consider this question using Fourie method (or
von Neyman analysis). Determine the vector of
unknown grid functions in (5) as follows

95, = (v, w,p.) A" expli(aj+yo+ gy, (6)

where ¢, y, B - arbitrary constants, u,,v,,w,,p, and

A - unknown constants. The matrix of equations
system for vector (u,,v,,w,, p,)” is

A-e rjisina r,(l-e) 0
AP, - P, 0 0 e’ 1 ™
0 AP —P, 0 r,Aisina
0 0 AR =P r(e”-4)
where
2
B=r+ly |+|Wo|”z+R Ax+ReAz+§+w°r sine,
Py=r,+ug (8,77 +8,e7 Y+ |wy |, (Te™ +T,e ™)
+20057+2rzcosﬁ’
ReAx ReAz
Ax Ax Ax r,(1-cos)
h=—"s h=""s L=, (: = —
AT Ay Az ReAy
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The characteristic equation of this matrix has
three different roots. Two of them are defined by the
equation

2 2
g Heosyiricosp), | Lrk ®)
147244 lr +4

A? =ry2 sin’a

and the third one - by the formula 4, = p/P.
The solution of (8) is

2
A= cosy+rzzcos,3+ cosy+r.cos f3 N 147}
2 1+72 + A2 1+r2+4° 1+r2+ A4

_ cosy+r’cosf
1477 + 42

le —cos’ y+2r2(1—cosycos B +r! (1-cos B)+ (1+rv

1+ri+ 42

Algebraic transformations lead to the formula

2
S s

It can be seen that these roots do not exceed one.
Consider the third root. Taking into account that

S,+8,=T+T,=1, §,~8,=+1, T,~T, =1
it can be found

|, =(C+|u, |cosy +|w, |r,cos B)°
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2|1y || w, |1, cosy cos B+ w, [2 1,  cos® B
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F2luy || wo |7, +lwo P 2,2 +v2 42,

where

2cosy  2r,cosf
= l+—_+—
ReAx  ReAz
2 2r,

B=r+——+——+¢&.
ReAx ReAz

>

Thus

C* +2C(|u, | cosy+| w, | 7, cosf)

+2|uy | wy | v, cost £ B)+|uy |2 +|w, P .°
B +2B(|u, | +|w |7,)

+2|uy | Wy 11+ 2y |2 +iwo| 7 +VOAz

|4, =

It can be seen that the difference between the
denominator and the numerator is always positive.

Thus all roots do not exceed one so that scheme
(5) converges unconditionally.

4, UNSTEADY PROBLEM

Unsteady problem is normally solved using the
general scheme of the IMM. In this case the solution
at each temporal layer is found by means of GI. Let
us make similar changes in the general scheme as
the ones we made above (4) to the modified scheme.
Then we have the following scheme (see Fig. 1):
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where S - a GI number and it is assumed that all
unknown functions are related to the current s -th
GI with the exception of those that have index
(s-1)-

The scheme (9) differs from the general scheme
in that the values of grid function with indexes
(o—-1) or (k-1) have index (s—1) (not s as in
the general scheme). Therefore obtaining solution at
transverse lines may be achieved for each GI by
means of a parallel algorithm. However it is
important to investigate whether this scheme
converges in GI. Consider this question using
Fourie method. Determine the vector of unknown
grid functions in (9) (where all unknown values that
have index m —1 are fixed) as follows

(@) = (., 0., w,,p.) A expli(aj+yo + Bk)).

The matrix of the equations system for vector
(u,,v,,w,, p,)" is (7), where the expression for P,

is different. Namely in this case it does not contain
the positive term 7,. Thus it is clear that we have the

same three roots and each of them does not exceed
one. It means that scheme (9) converges in GI
unconditionally at each temporal layer.

5. FIRST COMPUTED RESULTS

It can be shown that results obtained above for a
3D case hold for a 2D case[4-6]. It is clear that
parallel schemes for a case of the second order
approximations of the marching derivatives and for
the compressible Navier-Stokes equations can be

formulated in a similar way.

The fact of convergence of the parallel schemes
has been confirmed on solving test problems using
conservative form of equations and the second order
approximations of the marching derivatives (the
incompressible flow over a back facing step and sub-
and supersonic longitudinal flow over a circular
cylinder of a limited size). These computations
showed that the parallel scheme requires 5-20 per
cent more computational time (to reach the problem
solution) than the modified scheme (when
computations are performed using one processor).
This is consequence of using formula (4).

Estimation of speed-up shows following. The
ratio of the time needed for parallel computations to
the total computing time is more than 0.999 for the
codes using suggested parallel schemes. This means
that the speed-up achievable in an ideal case is more
than 1000. In reality achievable speed-up depends
on the quality of the code and on architecture of a
supercomputer or cluster as well as on the number
of the processor.

The test problem (2D Laval nozzle flow) is
solved at supercomputer NEC SX-5. According to
computations using 6 processors (that have shared
memory) the speed-up differs from 6 by a fraction
of a percent.

6. CONCLUSIONS

Efficiency of the parallel algorithm depends on
the structure of the computational scheme. The
structure of the schemes (5), (9) is such that the total
volume of computations equals practically the sum
of a large number (which is equal to the number of
the inner transverse lines) of independent and equal
parts. Therefore we can expect achieving high
values of the speed-up by using large number of
processors in shared memory architecture.

Parallel version of the IMM is universal and
simple like the marching one. Therefore it can be
used as a method for high performance computing
in fluid mechanics.
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