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UNSTRUCTURED MOVING-GRID FINITE-VOLUME METHOD
FOR UNSTEADY SHOCKED FLOWS

M. Yamakawa'" and K. Matsuno®

Unstructured grid system is suitable for flows of complex geometries. For problems with moving
boundary walls, the grid system must be time-dependently changing and deforming according to the
movement of the boundaries when we use a body fitted grid system. In this paper, a new moving-grid finite-
volume method on unstructured grid system is proposed and developed for unsteady compressible flows with
shock waves. To assure geometric conservation laws on moving grid system, a control volume on the space-
time unified domain is adopted for estimating numerical flux. The method is described and applied for two-

dimensional flows.
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1. INTRODUCTION

Recently, unsteady flow problems are briskly
researched in CFD, since steady flow problems
have reached the level of practical use. In unsteady
flow problems, moving boundary problems have
high needs. Especially, flows around a body which
changes its shape with time, or bodies penetrating
problem such as a flow around docking or
separating bodies, are very interesting. The most
popular method of calculating such moving
boundary problems is an overset grid method.[1]
This method, however, breaks the conservation
laws at exchanging flow variable between a main
grid and a sub grid. Thus, when we deal with such
problems, we have to overcome two important
issues. The one is for numerical methods. It is
important for methods to satisfy a geometric
conservation laws when the grid is moving and
deforming at every time-step. It is essential for
simulations of compressible flows to satisfy both
geometric  conservation laws and physical
conservation laws. Otherwise we cannot obtain the
correct Rankin-Hugoniot relation. As for this issue,
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we proposed a new method, “Moving-Grid Finite-
Volume Scheme,”[2] which adopts a control
volume in the space-time unified domain. The
method is implicit and is solved iteratively at every
time-step in order to assure both the geometric
conservation laws and numerical accuracy. Another
issue to be overcome is grid system for complicated
geometries. It is especially difficult to generate a
single body-fitted grid in the case of mergence of
two bodies. An unstructured grid system is flexible
and thus suitable to such problems.

The purpose of this paper is to present a new
finite-volume method on the moving unstructured
grid system. The present method combines the
moving-gird  finite-volume  method  with
unstructured grid system and introduces a new
algorithm, which permits addition and/or
elimination of the grid cells under the condition of
geometric conservation laws.

This paper is composed of 5 sections. Section
one is the introduction. In section two, the
governing equation is described. Section three the
efficiency of this method when applied to a two-
dimensional test problem and simple piston
problem are described. In section four the
penetration problem with addition and elimination
of the calculation elements is developed. Finally in
section five we give the conclusion.
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2. UNSTRUCTURED MOVING-GRID
FINITE VOLUME METHOD

2.1 GOVERNING EQUATION
The two-dimensional Euler equation can be
written in the conservation law form as follow:;

] + % + oF_ 0 )
o oOx Oy
where
P pu pv
pu pu’+p puv
q=| |E= = ) 2
pv puv pv: +p
e u(e+p) v(e+p)

The unknown variables p, u, v, and e represent

the density, velocity components in the x and y
directions, and total energy per unit volume,
respectively. The working fluid is assumed to be
perfect, and the pressure p is defined by

b= (- %fe Lo+ vz)} ()

where the ratio of specific heats is typically 1.4.

2.2 NUMERICAL ALGORITHM

When body-wall boundaries move and change
their relative locations, the body-fitted grid system
must dynamically change and deform its shape
according to the movement of the wall boundaries.
In this case, it is important to assure the geometric
conservation laws at every time step. Thus, we
adopt a control volume on the space-time unified
domain (x, y, t), which is three-dimensional for
two-dimensional flows, in order that the method
satisfies the geometric conservation laws. Now
Eq.(1) can be written in divergence form in the
space-time unified domain:

VF=0 @
where

F=Eg, +Fé +G8, , ®
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Control-volume
(Triangular prism)

Fig. 1 Control volume in space-time unified space

Here ¢, , ¢, and €, are unit vectors in X, y and t

directions respectively.

The present method is based on a cell-centered
finite-volume method and, thus, we define flow
variables at the center of cell in unstructured mesh.
The control volume becomes a triangular prism in
the (%, y, t)-domain as shown in Fig. 1.

We apply volume integration to Eq.(4) with
respect to this control volume. Then Eq.(4) can be
written in surface integral form as, using the Gauss
theorem:

VFdv = ﬁ-ndSzi En +Fn +qn ) =0 (7)
\ £ bt X y tl

where n is a outward unit normal vector of control
volume surface. V is the triangular prism control
volume and 8 is its boundary. n, = (n,, n, ,n, ); (/=
1,2,...5) is the normal vector of control volume
surface, and the length of the vector equals to the
area of the surface. The upper (/ = 5) and bottom (/
= 4) surfaces of the control volume are
perpendicular to t-axis, and therefore they have
only n; component and correspond to the areas in
the (x, y)-space at time t*' and t", respectively.
Thus, Eq.(7) can be expressed as,

qnﬂ(nz)s +qn(nz)4

+ i {(EIH—I/Z,Fn+1/2’qn+l/2)‘n} -0

=1 4

®)

Here, the conservative variable vector and flux
vector at (nt+1/2)-time step are estimated by the
average between n-time and (n+1)-time steps. Thus,
for example, E™"' can be expressed as,

E™V2 = (En +E™ )/2 (9)
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The flux vectors are evaluated using the Roe flux
difference splitting scheme[4] with MUSCL

approach, as well as the Venkatakrishnan limiter [5].

The method uses the variable at (nt+1)-time step,
and thus the method is completely implicit. We
introduce sub-iteration strategy with a pseudo-time
approach[3] to solve the implicit algorithm. Now by
defining that the operating function L(g™") as
Eq.(10), the pseudo-time sub-iteration is
represented as Eq.(11).

)

Llg™)=

>

(10)

3

+Z{(En+1/2’Fn+l/2’qn+l/2)‘n} ]
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dq;:(v) _ _L(qn+l(v>) (11)

where v is index for iteration, and is pseudo-time
step. To solve Eq.(11), we adopted the Runge-Kutta
scheme to advance pseudo-time step. When inner
iteration is converged, we can get {n+1)-time step
solution, g™

3. NUMERICAL EXAMPLE

3.1 TEST PROBLEM

At first it is necessary to check that the method
satisfies the geometric conservation laws, when the
grid is moving and deforming. We try to calculate a
uniform flow on moving and deforming grid. At
this test problem, boundary points are fixed and
inner points ( x;, y; ) are moved from initial grid
(x?,y") by Eq.(12-14).

x!' =% +0.3Ascos0", (12)

yl =y’ +0.3Assin0", (13)
n 3

" =— 0+ 0 — 14
2 (x‘ Y, )4On ( )

where As is the shortest grid spacing in the initial
grid. n is time step. The calculation domain is a
square of unit length. The initial condition is
uniform flow: pw = 1.0, poo = 1.0/y (y=1.4), te =
1.0, ve=1.0.

Fig. 2 shows the movement of the grid at each
times (t = 0.0 : initial grid). We calculate until t =
10.0 (1000 time step with At=0.01).

Fig. 3 shows the history of L2-Error of density.
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Fig. 2 Moving grid
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Fig. 3 History of L2-ERROR of density

The order of L2-Error is 10, which is machine
zero. And we had gotten the same results on
pressure and velocity. Thus they prove that this
method catch the uniform flow perfectly and satisty
a geometric conservation laws even if the grid is
moving and deforming.

Here, L2 Error is defined as;

max

(P—p. )

L2-ERROR = 2 (15)

1

max

3.2 VALIDATION OF THE METHOD

The method is applied to a two-dimensional
piston problem with shock wave and compared
with theoretical data. Fig. 4 illustrates the problem.
The initial length is 1.5 times of the height, and a
piston is traveled toward the other end-wall of the
cylinder. The piston begins to move at time t = 0
and accelerates at constant rate of 10.0 up to the
time t = 0.1 and then keeps the constant speed. The
initial condition of density, pressure, velocity
components in the x and y directions are given by:

Wall

Piston 0.0
Fig. 4 Outline of Piston problem

p=0.0,p=10/y (y =1.4), u=10.0,v=20.0. And
we calculate until t = 1.2 (4800 time step with At =
0.00025).

The initial grid was generated by Delaunay
Triangulations.[6] The number of elements is 3833.
Due to the movement of the piston, the grid is
deformed in the x-direction only by fixed rate. Thus,
the total number of the element is constant at every
time step. Fig. 5 shows the result of the flow field
and grid at t = 0.4 and 0.8. We can see the flow
field with traveling shock wave on moving
unstructured grid.

Fig. 6 shows the comparison of the computed
shock position and exact solution. The error of the
computation from the exact solution is in 0.9 —
1.3%. Thus, the result shows that the method
calculates the flow field accurately.

4. APPLICATION TO COMPLICATED
PROBLEM

In this section, we will try to calculate a
penetration problem of two solid bodies in
supersonic flow. In this case, it is necessary to

!

t=04

t=038

Fig. 5 Piston problem with shock wave on moving unstructured grid
(Upper : Deforming grid, Lower : Pressure contours)
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Fig. 6 Comparison of the position of shock wave

deform the flow region according to the movement
of the body. Thus, not only movement of grid but
also eliminating and addition of calculation
elements must be taken into consideration.

4.1 UNSTRUCTURED MOVING-GRID FINITE-
VOLUME METHOD WITH ELIMINATING AND
ADDING ELEMENTS

The present moving-grid finite-volume method
includes new algorithm for eliminating and adding
elements according to a change of geometry. The
method can also make it possible to calculate a flow
around body such that the body is penetrated into
another body. For the present method, the control
volume for discretization is considered in the space-
time unified space, and thus it can assure both
physical and geometrical conservation laws even if
the two of the elements are merged or a new
element is added.

At the case of addition of a element, we will
divide an element into two elements by cutting on
grid line. Fig. 7 shows a control volume of a
triangular prism that is formed by a element at n
step and elements at n+1 step, which an element i is
divided into an element i and a new element j by

‘Wall

Outlet,
> X

2.0

e Wall
Outline

Added vertex

New element

Fig. 7 Control volume with addition of element

Merged vertex
l‘n+l

tn

Eliminating vertex

Fig. 8 Control volume with elimination of element

added vertex on grid line,

In order to assure the geometric conservation
laws as well as physical conservation law, it is
necessary to apply individually the finite-volume
method to control volumes of the pentahedron 1 and
the tetrahedron j, as shown in Fig. 7. Thus, for the
pentahedron i, Eq.(8) is applied. While, for the
tetrahedron j, Eq.(8) is replaced as following
equation, since there is no bottom surface((n,)4 = 0)
of a control volume,

Me

qn+l (nr)s + {(Enu/z’le/z’qnu/z)_n}l -0 (16)

On the other hand, at the case of elimination of a

0.15

Detail view around bodies

Fig, 9 Outline of penetration problem
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Fig. 10 Penetration problem in supersonic flow (Upper : Deforming grid, Lower : Pressure contours )

element, we consider that the elements of next
doors is combined. Fig. 8 shows a control volume
in the case of elimination of element, in which a
vertex on line of the elements of next doors is
merged.

At this case, we consider the bottom surface of
the control volume at time tn to be sum of the
elements i and j of the hexahedron. Thus, Eq.(8) is
replaced as;

@ {n) ), +ar i), ), +a; ),

+Z4: {(EMHZ,F"H/Z,qM”Z)'n} -0

i

(17)

For this new algorithm, we have proved the
method to satisfy the geometric conservation low
using same type of test problem of Fig. 2, with
eliminating and adding grid elements.

4.2 APPLICATION TO BODY-PENETRATION PROBLEM

The method was applied to a penetration problem
where two solid bodies travel in supersonic flow
and the body penetrates another body (Inlet mach
number is Ma = 2.0). Fig. 9 illustrates the model.
The traveling solid body A is placed on an
upstream side in the duct, and the solid body A is
traveled toward the another stationary solid body B
by a constant speed (Ug = 0.1). The steady flow is
given as an initial condition. And we calculate until
t=10.0 (20000 time step with At = 0.0005).

We assume that each shapes of these bodies are
not changed when the body A penetrates the body
B. In the other word, properties of bodies are not
elasticity or plasticity. This means two bodies are
only overlap.

Fig. 10 shows the result of the flow field and
related grids at t = 0.0, 2.0, 4.0, 6.0, 8.0 and 10.0
respectively. The traveling body A penetrated the
stationary body B. Then shock waves moved with
body motion, and it shows a complex flow field. As
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the body A approaches to the stationary body B
(from t = 0.0 to 2.0), we can see that the five grid
elements between two bodies are eliminated. When
the body separates into two parts (from t = 8.0 to
10.0), added new ten elements can be seen.

5. CONCLUSION

In this paper, a new moving-grid finite-volume
method on unstructured grid system with the new
algorithm of elimination and addition of the grid
point has been proposed and applied to the unsteady
compressible flows with shock waves. With the
simple test problem, it was confirmed that the
method assures both geometric conservation laws
and physical conservation laws on moving gird
system. The result of the piston problem showed
that the method calculates the flow field accurately
and the position of the shock wave is correct. The
present approach was confirmed applicable for
complicated problems, for instance, body
penetration problem, in which addition and/or
elimination of the grid cells were conducted under
the condition of geometric conservation laws.
Therefore, we can conclude that the unstructured
moving-grid finite-volume method is effective to
calculate complicated moving boundary problems.
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