예천지역 화강섬록암 풍화대내 흑운모의 Rb-Sr 동위원소연대 변화

Rb-Sr Isotopic Ages of Biotite in the Weathering Profile of Granodiorite, Yecheon

  • 정기영 (안동대학교 지구환경과학과) ;
  • 정창식 (한국기초과학지원연구원 연대측정팀) ;
  • 이봉호 (안동대학교 지구환경과학과)
  • Jeong Gi Young (Department of Earth and Environmental Sciences, Andong National University) ;
  • Cheong Chang-Sik (Geochronology Team, Korea Basic Science Institute) ;
  • Lee Bong Ho (Department of Earth and Environmental Sciences, Andong National University)
  • 발행 : 2005.03.01

초록

예천지역 화강섬록암 풍화단면내의 흑운모가 산화흑운모로 풍화되는 과정에서 Rb-Sr 동위원소연대의 변화를 분석하였다. 신선한 흑운모와 풍화된 흑운모들의 Rb-Sr 동위원소 조성을 열이온화질량분석기로 측정하였고, 이를 기존의 K-Ar 자료와 비교하였다. Rb-Sr 동위원소연대는 흑운모의 산화정도에 따라 체계적으로 감소하는 경향을 보이며, 이는 K-Ar 연대의 감소경향과 잘 일치하였다. Fe/sup 2+/의 산화로 발생하는 과잉전하로 구조내 양이온들이 방출되는 과정에서 층간의 방사기원핵종도 일부 방출되었는데, 일가 양이온인 /sup 87/Rb이 이가 양이온인 /sup 87/Sr로 붕괴되어 딸핵종인 /sup 87/Sr이 모핵종인 /sup 87/Rb보다 심하게 흑운모로부터 제거된 것으로 보이고, 그 결과 Rb-Sr 동위원소연대가 감소하였다. 풍화된 흑운모는 모암의 연대측정대상으로 부적합한 것으로 보이지만, 풍화과정에서 방사기원 동위원소들의 거동은 흑운모 풍화의 지화학적 및 구조적 과정에 대한 유용한 정보를 제공한다.

Rb-Sr isotopic ages of oxidized biotite in the weathering profile of granodiorite, Yecheon area, were measured by thermal ionization mass spectrometry, and compared with their K-Ar ages. A decrease of Rb-Sr isotopic age is well correlated with iron oxidation, and consistent with K-Ar age. Octahedral and interlayer cations including Rb and Sr were partly released from the oxidizing biotite by excess positive charge from iron oxidation. Divalent /sup 87/Sr decayed from monovalent /sup 87/Rb was more easily released from biotite, resulting in the reduction of Rb-Sr isotopic age. Weathered biotite is not suitable for the age dating of parent rocks, but behaviour of radiogenic isotopes provides useful information on the geochemical and structural changes of biotite during weathering.

키워드

참고문헌

  1. 정기영, 김수진, 김영호, 조현구 (1995) 산청 고령토중의 흑운모의 풍화작용에 의한 캐올리나이트의 생성. 한국광물학회지, 8, 37-45
  2. Blum, J.D. and Erel, Y. (1997) Rb-Sr isotope systematics of a granitic soil chronosequence. The importance of biotite weathering. Geochim. Cosmochim. Acta, 61, 3193-3204 https://doi.org/10.1016/S0016-7037(97)00148-8
  3. Clauer, N., O'Neil, J.R., and Bonnot-Courtois (1982) The effect of natural weathering on the chemical and isotopic compositions of biotites. Geochim. Cosmochim. Acta, 46, 1755-1762 https://doi.org/10.1016/0016-7037(82)90115-6
  4. Dong, H., Peacor, D.R., and Murphy, S.F. (1998) TEM study of progressive alteration of igneous biotite to kaolinite throughout a weathered soil profile. Geochim. Cosmochim. Acta, 62, 1881-1888 https://doi.org/10.1016/S0016-7037(98)00096-9
  5. Fordham, A. W. (1990) Formation of trioctahedral illite from biotite in a soil profile over granite gneiss. Clays Clay Miner., 38, 187-195 https://doi.org/10.1346/CCMN.1990.0380210
  6. Goldich, S.S. and Gast, P.W. (1966) Effects of weatheringon the Rb-Sr and K-Ar ages of biotite from the Morton Gneiss, Minnesota. Earth Planetary Sci. Let., 1, 372-375 https://doi.org/10.1016/0012-821X(66)90028-8
  7. Harris, W.G., Zelazny, J.C., and Bloss, F.D. (1985a) Biotite kaolinitization in Virginia Piedmont soils: II. Zonation in single grains. Soil Sci. Soc. Am. J., 49, 1297-1302 https://doi.org/10.2136/sssaj1985.03615995004900050045x
  8. Harris, W.G., Zelazny, I.C., Baker, J.C., and Martens, D.C. (1985b) Biotite kaolinitization in Virginia Piedmont soils: 1. Extent, profile trends, and grain morphological effects. Soil Sci. Soc. Am. J., 49, 1290-1297 https://doi.org/10.2136/sssaj1985.03615995004900050044x
  9. Jeong, G.Y. (2000) The dependence of localized crystallization of halloysite and kaolinite on primary minerals in the weathering profile of granite. Clays Clay Miner., 48, 196-203 https://doi.org/10.1346/CCMN.2000.0480205
  10. Jeong, G.Y. and Kim, H.B. (2003) Mineralogy, chemistry, and formation of oxidized biotite in the weathering profile of granitic rocks. Am. Mineral., 88, 352-365
  11. Ludwig, K.R. (2001) Users manual for Isoplot/Ex rev. 2.49, A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. la. Berkeley, CA, USA, 56 p
  12. Michell, J.G. and Taka, A.S. (1984) Potassium and argon loss patterns in weathered micas: implications for detrital mineral studies, with particular reference to the Triassic palaeogeography of the British lsles. Sed. Geol., 39, 27-52 https://doi.org/10.1016/0037-0738(84)90023-X
  13. Mitchell, J.G., Penven, M., lneson, P.R., and Miller, J.A. (1988) Radiogenic argon and major-element loss from biotite during natural weathering: a geochemical approach to the interpretation of potassium-argon ages of detrital biotite. Chem. Geol. (Iso. Geo. Sec.), 72, 111-126
  14. Murphy, S.F., Brantley, S.L., Blum, A.E., White, A.F., and Dong, H. (1998) Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: II. Rate and mechanism of biotite weathering. Geochim. Cosmochim. Acta, 62, 227-243 https://doi.org/10.1016/S0016-7037(97)00336-0
  15. Rebertus, R.A., Weed, S.B., and Buol, S.W. (1986) Tranformation of biotite to kaolinite during saprolitesoil weathering. Soil Sci. Soc. Am. J., 50, 810-819 https://doi.org/10.2136/sssaj1986.03615995005000030049x
  16. Renne, P.R., Becker, T.A., and Swapp, S.M. (1990) 40Ar/39Ar laser-probe dating of detrital micas from the Montgomery Creek Formation, northern California: clues to provenance, tectonics, and weathering processes. Geology, 18, 563-566 https://doi.org/10.1130/0091-7613(1990)018<0563:AALPDO>2.3.CO;2
  17. Scott, A.D. and Amonette, J. (1988) Role of iron in mica weathering. In: Stucki, J.W. and Schwertmann, U. (eds.), Iron in soils and clay minerals. Reidel, Dordrecht, The Netherlands, 537-625
  18. Taylor, A.S., Blum, J.D., Lasaga, A.C., and Maclnnis, LN. (2000) Kinetics of dissolution and Sr release during biotite and phlogopite weathering. Geochim. Cosmochim. Acta, 64, 119 1-1208
  19. Zartman, R.E. (1964) A geochronologic study of the Lone Grove Pluton from the Llano Uplift, Texas. J. Petrol., 5, 359-408 https://doi.org/10.1093/petrology/5.3.359