Performance of Annealed Polyacrylonitrile Nanofiltration Membrane

아닐링된 폴리아크릴로니트릴 나노막의 성능

  • Lee Kew-Ho (Membrane and Separation Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim In-Chul (Membrane and Separation Research Center, Korea Research Institute of Chemical Technology)
  • 이규호 (한국화학연구원 분리막다기능소재연구센터) ;
  • 김인철 (한국화학연구원 분리막다기능소재연구센터)
  • Published : 2005.03.01

Abstract

The integrally skinned asymmetric PAN ultrafiltration membranes were annealed for reducing the pore size. The effect of the chemical structure of two PAN polymers (homo- and copolymer) on annealing was investigated. The annealing of PAN polymer was strongly affected by the chemical structure of the polymer. In other words, the annealing effect of the copolymer was much larger than that of the homopolymer due to its less rigid structure of the main chain. Before annealing, the membranes were usually preheated in water in terms of the complete removal of remained solvents in the membranes. The annealing effect was bigger when no preheating. However, the preheating of the membrane before annealing at high temperatures leads to an increase in the pore size of membranes. The surface of the membranes was slightly negative and the salt rejection of PAN nanofiltration membrane was in the following order: R(Na₂SO₄) > R(NaCl) > R(MgSO₄) > R(CaCl₂). This salt rejection behavior could be explained by the Donnan equilibrium and the electroneutrality.

통합형 비대칭 폴리아크릴로니트릴(PAN) 한외여과막의 기공크기를 줄이기 위하여 아닐링을 하였다. 두 종류 PAN 고분자(단일중합체와 공중합체)의 화학적 구조가 아닐링에 미치는 영향을 조사하였다. PAN 고분자의 아닐링은 고분자의 화학적 구조에 큰 영향을 받는다. 공중합체가 단일중합체에 비해서 덜 강직한 구조를 지니므로 아닐링에 훨씬 큰 영향을 받는다. 아닐링을 실시하기 전에 고분자 내에 잔존하는 용매의 완벽한 제거를 위하여 분리막을 물 속에서 예열 처리하였다. 예열처리를 하지 않은 경우가 아닐링 효과가 더 컸다. 높은 온도에서 아닐링 하기 전에 예열을 하면 기공크기의 증가를 가져 왔다. 막의 표면은 약간 음전하를 띠었고 PAN 나노막의 염배제율은 다음과 같은 순서로 측정되었다: R(Na₂SO₄) > R(NaCl) > R(MgSO₄) > R(CaCl₂). Donnan 평형과 전기중성도에 의해서 염제거 거동을 설명하였다.

Keywords

References

  1. M. Mulder, 'Basic principles of Membrane Technology', Kluwer, London (1996)
  2. K. Scott and R. Hughes, 'Industrial Membrane Separation Technology', Chapman & Hall, London (1996)
  3. R. E. Kesting, 'Synthetic Polymeric Membranes', Wiley, NY (1985)
  4. I. Pinnau and W. J. Koros, 'A qualitative skin layer formation mechanism for membranes by dry/wet phase inversion', J. Polym. Sci. Polym. Phys., 31, 419 (1993)
  5. H. Kawakami, M. Mikawa, and S. Nagaoka, 'Gas permeability and selectivity through asymmetric polyimide membranes', J. Appl. Polym. Sci., 62, 965 (1996)
  6. D. Wang, K Li, W. K Teo, D. Bo, and J. Kun, 'Polyethersulfone hollow fiber gas separation membranes prepared from NMP/alcohol solvent systems', J. Membrane Sci., 115, 85 (1996)
  7. H. Yanagishita, T. Nakane, and H. Yoshitome, 'Selection criteria for solvent and gelation medium in the phase inversion process', J. Membrane Sci., 89, 215 (1994)
  8. F. C. Lin, D. M. Wang, C. L. Lai, and J. Y. Lai, 'Effect of surfactants on the structure of PMMA membranes', J. Membrane Sci., 123, 281 (1997)
  9. P. Radovanovic, S. W. Thiel, and S. T. Hwang, 'Formation of asymmetric polysulfone membranes by immersion precipitaton. Part II. The effects of casting solution and gelation bath compositions on membrane structure and skin formation', J. Membrane Sci., 65, 231 (1992)
  10. I.-C Kim, K-H. Lee, and T. M. Tak, 'Preparation and characterization of integrally skinned uncharged polyetherimide asymmetric nanofiltration membrane', J. Membrane Sci., 183, 235 (2001)
  11. I.-C. Kim, H. G. Yoon, and K.-H. Lee, 'Formation of integrally skinned asymmetric polyetherimide nanofiltration membrane by phase inversion process', J. Appl. Polym. Sci., 84, 1300 (2002)
  12. I.-C. Kim and T. M. Tak, 'Synthesis of soluble anion-exchange copolyimides and nanofiltration membrane performances', Macromolecules, 33, 2391 (2000)
  13. I.-C. Kim, H. G. Yoon, and K.-H. Lee, 'Preparation of asymmetric polyacrylonitrile membrane with small pore size by phase inversion and post-treatment process', J. Membrane Sci., 199, 75 (2002)
  14. H. Strathmann, P. Scheible, and R. W. Baker, 'A rationable for the preparation of Loeb-Sourirajan type cellulose acetate membrane', J. Appl. Polym. Sci., 15, 811 (1971)
  15. J. M. M. Peeters, J. P. Boom, M. H. V. Mulder and H. Strathmann, 'Retention measurements of nanofiltration membranes with electrolyte solutions', J. Membrane Sci., 145, 199 (1998)
  16. J. Schaep, B. Van der Bruggen, C. Vandecasteele, and D. Wilms, 'Influence of ion size and charge in nanofiltration', Sep. Purif. Technol., 14, 155 (1998)
  17. X. L. Wang, T. Tsuru, S.-I. Nakao, and S. Kimura, 'The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes', J. Membrane Sci., 135, 19 (1997)
  18. I.-C. Kim, H. G. Yoon, and K.-H. Lee, 'Post treatment of asymmetric polyacrylonitrile membrane prepared by phase inversion', International congress on membranes and membrane processes Supplementary book of abstracts, 50 (2002)