Preparation of Bismuth Thin Films by RF Magnetron Sputtering and Study on Their Electrical Transport Properties

RF 마그네트론 스퍼터링을 이용한 Bismuth 박막의 제조와 그 전기적 특성 연구

  • Kim Dong-Ho (Korea Institute of Machinery and Materials, Department of Surface Engineering) ;
  • Lee Gun-Hwan (Korea Institute of Machinery and Materials, Department of Surface Engineering)
  • 김동호 (한국기계연구원 재료기술연구소 표면연구부) ;
  • 이건환 (한국기계연구원 재료기술연구소 표면연구부)
  • Published : 2005.02.01

Abstract

Bismuth thin films were prepared on glass substrate with RF magnetron sputtering and effects of substrate temperature on surface morphology and their electrical transport properties were investigated. Grain growth of bismuth after nucleation and the onset of coalescense of grains at 393 K were observed with field emission secondary electron microscopy. Continuous thin films could not be obtained above 473 K because of grain segregation and island formation. Hall effect measurements showed that substrate heating yields the decrease of carrier density and the increase of mobility. Resistivity of bismuth film has its minimum (about 0.7 x 10/sup -3/ Ωcm) in range of 403~433 K. Annealing of bismuth films deposited at room temperature was carried out in a radiation furnace with flowing hydrogen gas. The change of resistivity was not significant due to cancellation of the decrease of carrier density and the increase of mobility. The abrupt change of electrical properties of film annealed above 523 K was found to be caused by partial oxidation of bismuth layer in x-ray diffraction analysis.

Keywords

References

  1. C. B. Vining, Nature, 413 (2001) 577 https://doi.org/10.1038/35098159
  2. G. Chen, M. S. Dresselhaus, G. Dresselhaus, J.-P. Fleurial, T. Caillat, Int. Mat. Rev., 48 (2003) 1 https://doi.org/10.1179/095066003225010191
  3. B. C. Sales, Science, 295 (2002) 1248 https://doi.org/10.1126/science.1069895
  4. A. Majumdar, Science, 303 (2004) 777 https://doi.org/10.1126/science.1093164
  5. M. O. Boffoue, B. Lenoir, A. Jacquot, H. Scherrer, A. Dauscher, M. Stalzer, J. Phys. Chem. Solids, 61 (2000) 1979 https://doi.org/10.1016/S0022-3697(00)00186-4
  6. D. W. Song, W.-N. Shen, B. Dunn, C. D. Moore, M. S. Goorsky, T. Radetic, R. Gronsky, G. Chen, Appl. Phys. Lett., 84 (2004) 1883 https://doi.org/10.1063/1.1682679
  7. S. Cho, Y. Kim, A. DiVenere, G. K. L. Wong, K. B. Ketterson, J. R. Meyer, J. Appl. Phys., 88 (2000) 808 https://doi.org/10.1063/1.373740
  8. S. Cho, A. DiVenere, G. K. Wong, J. B. Ketterson, J. R. Meyer, C. A. Hoffman, Solid State Commun., 102 (1997) 673 https://doi.org/10.1016/S0038-1098(97)00063-X
  9. J. C. G. de Sande, T. Missana, C. N. Afonso, J. Appl. Phys., 80 (1996) 7023 https://doi.org/10.1063/1.363775
  10. T. Missana, C. N. Afonso, Appl. Phys. A, 62 (1996) 513 https://doi.org/10.1007/BF01571685
  11. M. O. Boffoue, B. Lenoir, H. Scherrer, A. Dauscher, Thin Solid Films, 322 (1998) 132 https://doi.org/10.1016/S0040-6090(97)00912-7
  12. D. L. Smith, Thin-film Deposition, McGraw-Hill Inc., New York, (1996) 143
  13. A. Dauscher, M. O. Boffoue, B. Lenoir, R. MartinLopez, H. Scherrer, Appl. Surf. Sci., 138-139 (1999) 188 https://doi.org/10.1016/S0169-4332(98)00420-6
  14. S. Yaginuma, T. Nagao, J. T. Sadowski, A. Pucci, Y. Fujikawa, T. Sakurai, Surf. Sci., 547 (2003) L877 https://doi.org/10.1016/j.susc.2003.10.015