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FUZZY CONVERGENCE THEORY -1

K. K. MONDAL AND S. K. SAMANTA

ABSTRACT. The main objective of this paper is to introduce the gradation of neigh-
bourhoodness in L-fuzzy topology and to introduce the fuzziness in the concept of
convergence of L-fuzzy nets.

0. INTRODUCTION

The study of neighbourhood systems and convergence of nets and filters in a
Chang fuzzy topological space (CFTS) was initiated by Pu & Liu [6] and Liu &
Luo [13]. Later on Chang fuzzy topology was generalised by Haohle [5], Sostak [11].
Chattopadhyay, Hazra & Samanta (2] introduced gradation of openness and studied
fuzzy topology. Side by side the study of graded neighbourhood system was also in
progress. In Ying [12] introduced the degree to which a fuzzy point z belongs to a
fuzzy subset A of X by m(zy, 4) = min (1,1— A+ A(z)) and gave the idea of graded
neighbourhood on a CFTS. Using this concept of graded neighbourhood Ramadan,
El Deeb & Abdel-Sattar [9] studied the convergence of a net in a smooth topological
space (a smooth topological space is similar to fuzzzy topologys as defined by Héhle
[5], Sostak [11] and Chattopadhyay, Hazra & Samanta [2] using crisp points as well
as fuzzy points.

Apart from Ying [12], Demirci [4] introduced the idea of graded neighbourhood
in smooth topological space in a different approach but restricted himself to the
I-valued fuzzy sets where I = [0, 1].

In this paper we have generalised the idea of graded neighbourhood system for
L-fuzzy sets, where L is a F-lattice. Also we take the definition of neighbourhood.
system slightly different from those of Demirci [4].
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In section 2 of the present paper we have studied the characteristic properties
of graded neighbourhood system named as “gradation of 9-neighbourhoodness” in
L-fuzzy setting.

In section 3 we have used this concept of graded neighbourhood to develop the
concept of graded convergence of a fuzzy net. Relations between graded closure of
a fuzzy set and graded convergence of a fuzzy net have also been studied.

1. NOTATION AND PRELIMINARIES

In this paper X denotes a nonempty set; unless otherwise mentioned, L denotes a
completely distributive order dense complete lattice with an order reversing involu-
tion 7 whereas Lo = L — {0}. Let 0 and 1 denote the least and the greatest elements
of L. LX denotes the collection of all L-fuzzy subsets of X; Pt(L*) denotes the set
of all L-fuzzy points of X. By 0 and I we denote the constant L-fuzzy subsets of X
taking values 0 and 1 respectively. For p, € Pt(LX) and A,B € LX we say

p: QA if pg ¢A'
and
AQB if AZ B'.

For other notations we follow Liu & Luo [13].

Definition 1.1 (Sostak [11]). A function 7 : LX — L is called an L-fuzzy topology
on X if it satisfies the following conditions:

(01) 7(0) =7(1) =1

(02) 7(A1 A A2) > 7(A1) AT(Ag), for Ay, Az € LX

(03) 7(Viendi) > NieaT(A;) for any {Ai}ien C L.

The pair (X, 7) is called an L-fuzzy topological space and 7 is called a gradation of
openness (GO) on X.

Definition 1.2 (Sostak [11]). A function F : L*X — L is called an L-fuzzy co-
topology of X if it satisfies the following conditions:

(C1) F(0)=F(1)=1

(02) .'F(Al \Y A2) > .7:(141) A ]:(Az), for A1, Ag € X

(03) F(Aiea 4:) = Niea F(4) for any {Ai}iea € I¥.

The pair (X, F) is called an L-fuzzy co-topological space and F is called a gradation
of closedness (GC) on X.
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2. SOME RESULTS ON GRADED NEIGHBOURHOOD SYSTEM

Proposition 2.1. Let (X, 1) be an L-fuzzy topological space with T as a gradation
of openness on X and let 7. = {U € LX;7(U) > r} then

(1) 7+ s a Chang L-fuzzy topology for every r € Ly,
(2) 7 C 75 ifr > ;7,5 € Lo, and
(3) Mica T = TViears
Proof. (1) We have 7(0) = 7(1) = 1 s0 0,1 € 7,V r € Lo.

For any Uy, Us € LX Uy, Uy € 7 = 7(UL),7(U2) > 7

= 17(U1 AU2) > 7(Uy) AT(Uz2), by(02)
> T
Finally, U; e Vi€ A= 7(U;) > r, Vi€ A.
So,
T( Viea Ui) > Nieat(Us), by (03)

T.

v

Hence 7, is a Chang L-fuzzy topology for every r € Lg.
(2) and (3) are straightforward. O

Proposition 2.2. Let {T,}rcr, be a collection of fuzzy subsets of X satisfying
(1) Tr is a Chang L-fuzzy topology on X for each v € Lo,
(2) T, CTs if r > s; 1,8 € Lo then the mapping 7 : LX — L defined by
7(A) = V{r; A € T.} is an L-fuzzy topology on X and if further T, satisfies,
(3) Mica Tr; = Tvear: then the collection 7, = {U € LX; 7(U) > r} is identical
with T, for every r € Lg.

Proof. 1)0,ie T, VreLy = r0)=71)=1.

(i) Ay € Ty, A2 € Ty, = A1, A2 € Trinry, by (2) = A1 A Ag € Toypry, by (1)
= 7(A; A Ag) > 71 A g, by the definition of 7. As L is completely distributive so
T(Al A Az) > T(Al) A T(AQ).

(ili) Let A; € Ty,; @ € A,

If Ajea i = 0 then obviously T( Viea Ai) > NieATi.

So let Njeami # 0 then A; € Thiear, Dy (2) Vi € A = Viep Ai € Thiears
by (1) = 7(Viea A;) > N;eari, by the definition of 7. Again as L is completely
distributive so T(VieA Ai) > NieaT(Ai).
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Next we want to show that T, = 1. forr € Lg. A€ T, = \{kAceTx} >2r=
7(A)>r=>Aecrnforrely SoT, CrVrekly AgagmBern=>71(B)2r=
V{k € Lo; B € Ty} > r.

LetSZ{kELo;BETk}. Then Be T, forke S iBEﬂkeSTsz\/keg =T
and s > 1.

So, BeT, = 7 CT, for r € Lyg. O

Definition 2.3. Let (X, 7) be L-fuzzy topological space and let @ : Pt(LX) x LX —
L be a mapping defined by Q(p, A) = \/{7(U); p: QU C A}. Then Q is said to be
a gradation of d-neighbourhoodness.

Proposition 2.4. Let Q be a gradation of Q-neighbourhoodness in an L-fuzzy topo-
logical space (X, 7). Then

(QN1): Q(pz, 1) =1, Q(ps,0) =0 forp; € Pt(L%),

(QN2): Q(pz, A) < Q(ps, B) if A,B € L*, AC B,

(QN3): Q(pz, AN B) = Q(pz, A) A Q(pe, B) for p: € M(LX) and A, B € LX.

(QN4): Q(pz, A) £ k= 3By € LX such that p, 4B, C A and A{Q(ry, Bp);
ry € Pt(LX); r, A By} £ k.

Proof. The proof of (QN1)—-(QN2) is straightforward.

(QN3): Q(pz, A A B) < Q(pz, A) A Q(pz, B) is obvious from (QN2).
Next let p, QU C A and p,QV C B then as p; € M(LX) so,

p: QUAV)CAAB = Q(ps, ANB) > T(UAV) 2 17(U)AT(V).

Since L is completely distributive so Q(pz, A A B) > Q(pg, A) A Q(ps, B).
So, Q(pa:, AN B) = Q(p:m A) A Q(p:cy B)-

(QN4) : Q(ps, A) £ k= V{7(U); pzAU C A} £ k
= 3U; € LX such that p,QU; C A and 7(U1) £ &k

Taking By, = U; we have V r, Q By, ry 4 By C Bp and 7(Bp) £ k.
Now
Q(ry, Bp) = V{r(U);ry QU C Bp} 2 7(By) for ry 4 By
= Nr, AB,)@(Ty Bp) 2 7(Bp).
So, 7(Bp) £ k = Ar,qB,)@(ry, Bp) £ k. O
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Proposition 2.5. Let Q : Pt(LX) x LX — L be a mapping satisfying (QN1)-(QN3)
of Proposition 2.4. Let 7 : LX — L be defined by

7(A) = NQ(pz, A); pr € M(L) and p 4 A}.

Then (X,7) forms an L-fuzzy topological space. If further the condition (QN4) of
Proposition 2.4 is satisfied by Q then the mapping Q : Pt(LX) x LX — L defined by
Q(pz, A) = V{F(U); p- QU C A} is identical with Q.
Proof. Verification of (O1) is straightforward.
(02): 7_-(A A B) = /\{Q(pz,A A B); Pz € M(LX); Dz q(A A B)}
= AN Q(pz, A) A Q(pz, B); pr € M(LY); p A(A A B)}, by (QN3)
= { A [Q(ps, A); Pz € M(L¥); pz A(A A B)]}
M A [Q(pz, B); po € M(LY); po A(A A B)]}
> { A [Q(pz, A); px € M(LY); pr A A}
AN A [Q(pz, B); ps € M(LY); pzqBJ}
= 7(A) A 7(B).
(03): For any p; € M(LX), p;9(Viea 4i) = pz 9 A; for some j € A.
Then Q(pz, Viea4s) > Q(pz, 4;), by (QN2),
Z Nry qu)Q(Ty’AJ')’ Ty € M(LX) as ps9A;
= T(4;) 2 NieaT(4;)-
Since this is true for all p, € M (LX) with p, d ( Viea Ai) so

N Q(pz, Vieadi); pz € M(LX); pa A(VieaAi)} = AieaT(4s),

i.e., T(Viea Ai) > NieaT(4:)
To prove the last part of the proposition let us suppose that Q satisfies the condition
(QN4) of Proposition 2.4. If Q(pz, A) = 0 then obviously Q(pz, A) < Q(pz, A).
So let us suppose Q(pz, A) > 0.
Then

Qlpz, A) £ m = V{7(U); p,AU C A} £ m
= 3 U, € L* such that p,9U, C A and 7(Up) £ m.
Now

HUp) £m= N\{Qry Tyl vy € MILY); 1,90, | £m
= Q(ry,Up) £€m and ry € M(LX) with r, QU,.
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Again as

2:U, = p £ Uj(x)
= 35 € M(L) such that s <p but s £ Up(x)
[since M(L) is join generating subset of L]
= 5;9U, and s, € M(LX)
= Q(sz,Up) € m
= Q(pz,Up) £ m [since py > sz = Q(pz, Up) > Q(s4,Up))
= Q(pz, A) £ m [since U, C A].

Hence

Q(pz, A) < Q(ps, A) (%)
Again
Qps, 4) £ o
= 3 B, € L such that p, 4B, C A and
A Q(ry, By); ry € PH(LY); 7y ABy} £ .
= 3 B, € L such that p, 9B, C A4 and 7(B,) £ a
= \V{7U); pAU Cc 4} £

= Q(ps, A) £ .
Hence
Q(pz, A) < Q(pz, A). (%)
So, Q(pz, A) = Q(pz, A) for p, € Pt(LX) and V A € LX. O

Lemma 2.6. If for every p, € M (LX) with p, QA we choose any Up, € LX with
p: AUy, C A then A=\/{Up,; p. € M(LX) and p,qA}.

Proof. \/{U,,; px € M(L¥X) and p,QA} C A is obvious.
If possible let V{Up,; pr € M(L¥X) and p.9 A} be a proper subset of A then
3 z € X such that

A(2) > (V{Up,; pr € M(L*) and p, 9 A})(z)
= A'(2) < (V{Up; ps € M(L¥) and p, Q4})'(2).
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As M (L) is a join generating set of L so

3k € M(L) such that k £ A'(2) but k < (V{Up,; pr € M(L™) and pqu})’(z)
= k. QA but k, 4(V {Up,; p. € M(L¥) and p, 9 A4})
= k, QA but k, 4U,, ¥V p, € M(L*) with p, 9 A,

which is a contradiction to the given condition. O

Proposition 2.7. Let Q be a gradation of A-neighbourhoodness in an L-fuzzy topo-
logical space (X, 7) and 7 : LX — L be defined by

7(A) = MQ(pz, A); pa € M(LX); p, A A}

then 7 is an L-fuzzy topology on X and T = 1.

Proof. As @ is a gradation of g-neighbourhoodness in (X, 7), so all the conditions
of Proposition 2.4 are satisfied by @. So, by Proposition 2.5 we can say that 7 is an
L-fuzzy topology on X.
Also Q(ps, A) = V{T(U); p. QU C A} > 7(A) V p, € Pt(LYX) with p, 9 A
= ANQ(ps, A); pr € M(LX) and p, 9 A} > 7(A) = 7(A) > 71(A) VY A e LX.
= T2>T.
Next, if A = 0 then 3 no p, € M (LX) such that p,q0 so 7(0) = 1 = 7(0).
If A # 0 then for each p, € M(LX) with p, QA if we take any Up, satisfying
Pz 9Up, C A then by Lemma 2.6 A = U{Up,; p, € M(LX) and p, qQ A}.
So,
7(4) = 7(U{Up.; ps € M(L¥) and pyaA}) > AM{7(Up,); p= € M(LY); p- 9 A}.
(1)
Again as L is completely distributive and the relation (1) is true for any Up, sat-
isfying p; QU,, C A it follows that 7(A4) > A{Q(pz, A); p € M(LX) and py 9 A},
i.e., T(A) > 7(A). As A € LX is arbitrary, 7 > 7. O

Remark 2.8. It may be noted that for r € Lo and e € Pt(LX), Q.(e) = {4 €
LX; Q(e, A) > r} is not necessarily a g-neighbourhood system of e with respect to
the Chang fuzzy topology 7, which is shown by the following example.

Ezample 2.9. Let X = {0,1,2,3,...}, L=T = {(r,s) € I xI; r+ s < 1} and
the P.O relation ‘<’ in Z is defined as (r1,s1) < (r2,82) & 7r <72 and s; > s9,
‘V’and ‘A’ are defined by

(r1,81) V (rg,s2) = (r1 V12,81 A sg) and (r1,51) A (r2,82) = (r1 AT2,81 V 82)
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respectively.
Let

<0. +n—71L2,0,9—-n———_1+2> f r>nand n=1,23,...

(0,1) elsewhere.

Then {A,} is a monotone decreasing and {4}, } is a monotone increasing sequence
of L-fuzzy subsets of X.
Let B € LX be defined by

And let 7 : LX — L be defined by
1 1
forn=1,2,3,... and
1 1
4) = (054 ——,05 - —
7(4n) O5+n+2’05 n—2>’
forn=1,2,3,....

7(0) = (1) = (1,0), 7(B) = (0.6,0.4) and 7(A) = (0,1) for any other L-fuzzy
subsets A of X. Then 7 is an L-fuzzy topology on X. Q((O.G, 0.4)o, Al) = (0.5,0.5),
i.e, Al € Q(0.5’0.5), ((0.6, 0.4)0) but 3nolU € 7(0.5,0.5) such that (0.6,0.4)0QU C A;.

Hence Q(0_5,0.5)((O.6,0.4)0) is not a g-neighbourhood system of (0.6,0.4)y with

respect to the Chang fuzzy topology 7(05,0.5)-

Remark 2.10. We shall denote the g-neighbourhood system of e with respect to the
Chang fuzzy topology 7. by Q,(e), i.e., Qr(e) = {U € LX; 3V € 7, satisfying
eqQV c U}.

Definition 2.11. Let (X, F) be an L-fuzzy co-topological space with F as a GC
on X. For each r € Ly and for each A € LX we define

c(A,r) =A{D e L*; AC D; D € F.} where F, = {C € L*; F(C)>r}.
cl is said to be L-fuzzy closure operator in (X, F).

Proposition 2.12. Let (X, F) be an L-fuzzy co-topological space with F as a GC
on X and let cl: LX x Lo — LX be the L-fuzzy closure operator in (X, F) where L
is a completely distributive order dense and complete lattice with an order reversing

involution'. Then
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s cl(0,r)=0; c(I,r)=1Vre L.

ccl(A,r) DA YAeLX and V r € Ly.

ccl(A,r) Ccl(A,s4f r<s.

s cl(Ay \/Ag, r) = cl(A1,7) Vcl(Ag,r), Y r € L.
ccl(cl(A4,r),r) =cl(4,r), Vre L.

CIfl= V{r € Lo; cl(A,r) = A} then cl(A,l) = A.

N N SN N~
Q
o
=
N N N N e
[g)

The proof is straightforward.

Proposition 2.13. Let L be a completely distributive order dense and complete
lattice with an order reversing involution ' and cl: LX x Lo — LX be a mapping
satisfying (CO1)~(CO4) of Proposition 2.12. Let F : LX — L be a mapping defined
by F(A) = V{r € Lo; cl(4,r) = A}V A€ LX then F is a GC on X and cl = clz
if and only if (CO5) and (CO6) are satisfied by cl.

Proof. Obviously F(0) = F(1) = 1. Let cl(A1,71) = A4; and cl(Ag,r9) = As then

cl(A; V Ag, 11 A r9) = cl(A1, 71 A 7‘2) \ Cl(Az,’r‘l A 7‘2) < Cl(Al,T'l) V cl(Az,r2)
=A;V Ay :>.7}(A1 \/Ag) > 11 ATo.

As L is completely distributive so F(A; V A2) > F(A1) A F(Az) .
Let cl(A4;,7;) = A; Vi € A then

cl (Aien Ai, Niears) < cl (As, Aieari), Y i€ A, by (CO4)
<cl(4;,1m), Vie A, by (CO3)
=A;, Viel

= ol (Nica Ai, Niears) < Nieads
= F(Niea Ai) > Aieari.
As L is completely distributive so F ( NieA Ai) > NieaF(A)).
Now to prove the second part, suppose cl satisfies conditions (CO5) and (CO6) in
addition to the conditions (CO1)—(CO4) of Proposition 2.12.
First we shall prove (D) > 1 <= cl(D,l) = DVl € Ly. F(D) > implies
V{r € Lg; cl(D,r) =D} > .
Let S = {r € Lo; cl(D,r) = D} then V{r; r € S} > 1.
Again cl(D, V,esr) = D, by (CO6), = cl(D,l) = D, by (CO3).
Obviously cl(D,l) =D = F(D)>1,
Thus (D) >1 <= cl(D,l)=D.
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Now clz(A,1) = A{D 2 4; D € F;} = A{D 2 4; cl(D,l) = D} < cl(A,1).
(as: cl(4,1) D A and cl(cl(A,1),1) = cl(A,1), by (CO5) ).
Again cl(D,l)=D 2 A = cl(D,l) > cl(4,1), by (CO4)
So, clz(A,1) = A{D 2 A; cl(D,l) = D} = A{cl(D,l) = D D A} > cl(4,1).
Hence clz(A,l) = cl(4,!). Converse is obvious. a

Proposition 2.14. A fuzzy point p, € cl(A,m) < VYV U € LX satisfying
pz AU 4 A implies 7(U) 2 m.

Proof. Let p, € cl(A,m). If possible let 3 U € L such that p, QU 4 A and 7(U) >
m.

Then p, ¢ U¢and A C U%,U¢ € Fr, = cl(4,m) C U°. But p, € U° D cl(4,m)
is a contradiction.

Conversely, let the given condition be satisfied. Put cl(4,m) = B, then clearly
B € F,,. If possible let p, € B then p,4B°dB. So taking B¢ = U we see that
7(U) > mand p, QU 94 A (since A C B) which is a contradiction to our assumption.

So p; € cl(A,m). O

Corollary 2.15. p, & cl(A,m) <= 3 at least one U € Qn(p;) such that U 4 A.

Proposition 2.16. Let (X,7) be an L-fuzzy topological space with L as an order
dense chain and cl be the closure operator on X. Then p, € cl(A,m) <= VU
satisfying p, QU ¢ A3 at least one L-fuzzy point. vy QU such that Q(ry,U) < m.

Proof. p; € cl(A,m)
<= V U satisfying p, QU ¢ A implies 7(U) # m
<= V U satisfying p, QU 9 A implies 7(U) < m (as L is a chain)
<= VU satisfying p, QU 44, A, qu)@(ry, U) <m
<= V U satisfying p; QU ¢ A3 at least one 7, QU such that Q(ry,U) <m. O

Proposition 2.17. In an L-fuzzy topological space (X, 7),pz € cl(A,m) <= VU €
™m, Pz AU = UQA.

Proof. Let p, € cl(A,m) and let 3U € 7, such that p, QU but U 4 A then U°€ € F,
and p, € U but A C U Now A CU® and U¢ € F, = cl(4,m) C U°. Hence
pz € cl(A,m) but p, & U° is a contradiction.

Conversely, let the given condition be satisfied and if possible let p, & cl(A4,m).
Put cl(A,m) = B thenp, ¢ B = p;,qQB¢also Be F,, = B°€r,. SoB°€m,
and p, 4 B° but B® 4 A (since A C B) is a contradiction. O
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Proposition 2.18. In an L-fuzzy topological space (X,7) the following statements

are equivalent

(i) pz € cl(A,m)
(i) VU € Tn, p QU = UQA
(ili) U € Qm(pz) = UQA.

Proof. (i) <= (ii), by Proposition 2.17.

(i) <= (iii).

For, let (ii) hold and let U € Qm(ps) then 3 V € 7, such that p,qV C
U= VQqA, by (ii) = UQqA (since V C U), i.e, (il) = (iii).

Conversely, let (iii) hold and let U € 7,,, with p, QU then U € Qm(p:) = U4 A4,
by (iii), 1. e., (iii) = (ii). O

3. Fuzzy NET AND 1TS CONVERGENCE

Definition 3.1. Let (X, 7) be an L-fuzzy topological space where L is completely
distributive order dense complete lattice with an order reversing involution ' and
e € Pt(LX). Let D be any directed set and S : D — Pt(L¥X) be any fuzzy net.
For U € LX if 3 m € D such that S(n)qQU VYn > m holds then we say that
SqU eventually; if for every m € D 3 n € D such that n > m and S(n)qU
then we say SQU frequently. Call ‘e’ a cluster point of upper grade {, denoted by
Soote and of lower grade k, denoted by Sooge of a fuzzy net S : D — Pt(LX), if
I'=AN{r e Ly; VU € Q.(e), UQS frequently} and k' = V{r € Lo; 3V € Qr(e)
such that V ¢S eventually} respectively. Call ‘e’ a limit point of upper grade [,
denoted by S —' e and lower grade k, denoted by S —¢ e, of S if I' = A{r €
Lo; VU € Q.(e), UQS frequently} and k' = V{r € Lo; 3V .€ Q-(e) such that
V 48 frequently}.

Proposition 3.2. For any fuzzy net S in an L-fuzzy topological space (X, 1),

(i) S—le& S—pe = k#l
(ii) So_ole&Sooke = k}L

Proof. (i) LetU = {r € Lo; YU € Q-(e),UQS eventually} and V= {r € Lg; 3V €
Qr(e),V 4S frequently}. Then obviously YNV = @ and Y UV = Ly Also from
the definition of upper limit and lower limit we have I’ = AU and k' = VV. If
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AU > VYV then 3 m € Ly such that AU >m >VY = mgU & m ¢V, which is a
contradiction that &/ UV = Lg. So, AU > VV is not possible, i.e., I’ k' = k # 1.
(ii) Similar to (i). O

Proposition 3.3. If in addition L is o chain then in the L-fuzzy topological space
(X’ T)’

(i) S —>teand S —re = k=1

(i) Soole and Soore = k =1.

Proof. (i) As in the above Proposition, if we consider the partitions I and V of Ly,
and ' = AU, k' = VV then we have k < [. If possible let k < [ then k¥’ > = 3Im €
Losuchthat ¥ >m >0l = VW>m>Ad = meV and m € U, which is a
contradiction that Y NV = @. Hence k £ [.

(ii) Similar to (i). ]

Remark 3.4. If L be an order dense chain then in the L-fuzzy topological space (X, 7)
then Soole and Sooje together will be commonly denoted by Soco(l)e Similarly,
S —! e and S —; e together will be commonly denoted by S — (l)e.

Proposition 3.5. Let (X, 7) be an L-fuzzy topological space S = {S(n); n € D} a
fuzzy net in X and e, f € Pt(LX). Then )
(i) § »le = Soofe for some k > 1; k,l € L.
(ii) Soole > f = Sooff for some k>1; k,l€ L.
(iii) S =»le>f = S —k f for some k > 1; k,l € L.
(iv) Sooke = S —e for somel < k; k,l€ L.
(v) Soore < f = Soorf forsome | <k; k,leL.
(vi) S—re< f = S f forsomel<k; k,l€L.

The proof is straightforward.

Definition 3.6 (Liu & Luo [13]). Let (X,7) be an L-fuzzy topological space and
S:D — Pt(LX),T : E — Pt(L¥X) be two fuzzy nets in X. Call T a subnet of S or
call S a parental net of T if 3 a mapping N : E — D, called a cofinal selection on
S, such that (i) T = S ®© N (ii) for every ng € D 3 mg € E such that N(m) > ng

for m > my.

Proposition 3.7. Let (X, 7) be an L-fuzzy topological space, S be a fuzzy net in X
and T be a subnet of S, e € Pt(LX). Then
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() S=te = T o*e forsomek>1; ke L.
(ii) Tocle = Soofe for some k> 1; I,k € L.
(i) T —re = S - e forsomel <k; k,leL.
(iv) Soore = Toose for somel <k ; k,l € L.

Proposition 3.8. Let (X, 7) be an L-fuzzy topological space with 7 as a GO on X,
S be a fuzzy net in X, A be the collection of all subnets of S, e € Pt(LX). Then
(1) Sole = l=Area{rel; T —" e}
(2) Sole = | =Vpea{r € L; Tox"e}.
(3) Soo(l)e = l=Vpea{r € L; T — (r)e } if L is a chain.
(4) Soo(l)e = 3 a subnet T of S such that T — (l)e if L is a chain.
(5) S—o1e = 1= Area{r; T —, e}
(6) Socie = 1= Vrea{r € L; Toore}.
The proof is straightforward.
Proof. (1) Forany T € A,T »"eand S »'e = r>1. So,
1< N{rel; T "€}

Ten
Again as a particular case taking T = S we get | > Area{r € L; T —" e}.

Hence the proof.

The proof of (2) is similar to that of (1).

(3) Let T : E — Pt(L*) be a subnet of S such that T =" eand N : E — D be
the function given in the definition of subnet.

Then for every s > ', U € Qs(e) = U QT eventually. Let mo € D, s(> r’) and
U € Qs(e) be given. Then I m; € E such that Vm € E, m > mj = N(m) > mg.
Also because T' =" e 3myp € Esuchthat Vm € E, m > mg = T(m)qU,
i.e., S(N(m))qQU. Now choose m € E such that m > m; and m > m2 and let
n = N(m). Then n > mg and S(n)qQU. As s(> r'), mg and U were arbitrary it
follows that Soo’e for some [ > r.

Again as T € A is arbitrary so Soole = 1> \/pea{r € L; T =" e}.
Conversely, let Soote in (X, 7). We construct a subnet T' of S as follows:

Let E = {(n,U) € D x {,,>r Qm(e); S(n)qU}. For (n,U), (m,V) € E we
let (n,U) > (m,V) <= n>minDandU <V in Um>1er(e). It is easy to
show that the binary relation >’ directs the set E. Now define T : E — Pt(LX)
by T(n,U) = S(n) for (n,U) € E. Then T is a fuzzy net in X and actually it
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is a subnet of S, because if we define N : E — D by N(n,U) = n, we see that
both the conditions of definition of a subnet are satisfied. It only remains to verify
thatT —" e for some r > [.

For this let G € Qm(e) be given where m > I is arbitrary. Since Soo'e so SqG
frequently. In particular fix any n € D such that S(n)qG. Then (n,G) € E.
Now for any (p,U) € E with (p,U) > (n,G), T(p,U)qU (since T(p) = S(p))

= T(p,U)4G(since U C G).
Thus T —" e for some r > . So, | < Vyea{r € L; T —7" e}.

Hence the proof of (3). The proof of (4)—(6) can be obtained similarly. O

Proposition 3.9. Let (X, 1) be an L-fuzzy topological space with 7 as a GO on X,
AecLX. ThenV ee M(LX), e€ cl(A, k' = 3 a fuzzy net S in A such that S =l e
for some [ > k.

Proof. e € cl(A, k') = for every U € Qy(e), U9 A (by Proposition 2.17).

As e € M(L¥) so Qu(e) is a directed set with respect to the relation ‘>’ defined

by
U>V <<= UCYV for U,VEQk'(e).

So, we define a fuzzy net S : Qu(e) = A by S(U) = a fuzzy point having
support at where Uq A (if U Q A at many points then take any one among them as
a support) and grade equal to the grade of A at this support. Then S is a fuzzy net
in Aand as VU € Qp(e), UdA so VU € Qp(e) UQS eventually, which implies
A{s € Lo; VU € Qs(e), UQS eventually} <k = S —'e for somel > k. O

But converse of this proposition has some problem which can be shown by the

following example.

FEzxample 3.10. Let X be any nonempty set and L =7 = {(r,s) e I xI; r+s < 1},
the set of all instuitionistic pairs. A € LX be defined by A(z) = (0.6,0.4) for z € X.
We define a mapping

F:L*X - L by F(I) = F(0) = (1,0), F(A) = (0.4,0.6),
F(A") = (0.6,0.4) and F(B) = (0,1)

for any other B € LX. Then F is a GC on X. Let S: N — Pt(LX) be a fuzzy net
defined by

1 1
— (06— 1 04
5(n) (06 nt3 +n+3)€
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for some £ € X, where N is the set of all natural numbers. Now we observe
that S(n) ¢ A’ eventually, so S9QA eventually and S(n) € A eventually, so S d A’
eventually. Again the fuzzy point (0.7,0.3)¢ 9 A as well as (0.7,0.3)¢ 9 A’ so

N(r,s) € To; YU € Qpry(€), SAU eventually} < (0.4,0.6) = S == (0.7,0.3);

for some (a,8) > (0.6,0.4) with respect to the GO F; but cl(4,(0.4,0.6)) =
A = (0.7,0.3) & cl(4, (0.4,0.6)) but (0.7,0.3)¢ € M(LX).

Proposition 3.11. In an L-fuzzy topological space (X, 1), e & cl(A, k') = for any
fuzzy net S in A if S =, e thenl < k.

Proof. We have, by Corollary 2.15, e & cl(4,k") <= 3 at least one U € Qw (€)
such that U 4 A. So, for any fuzzy net S in A, S QU at all. This means if § —; e
then I’ > k' and hence | < k. O

Corollary 3.12. If 3 a fuzzy net S in A such that S —; e and | > k € Lo then
e € cl(4,K).
Proposition 3.13. Let f: (X,7) — (Y,8) be a gp map where (X,7) and (Y,4) be

any two L-fuzzy topological spaces, S be any fuzzy net in X. Then S —Fein (X,7)
for someke L = fo8 =t fle)in (Y,8) for somel > k.

Proof. Let Q,(e) and Q"(f(e)) be the d-nbd systems of e and f(e) with respect to
the Chang fuzzy topology 7, and Sr respectively.
As fisagpmapso V € Q/(f(e)) = fY(V) € Qr(e)¥ r € Lo.

Again if $q f~1(V) eventually then f(S)qV eventually. From these two facts we
can conclude that if V U € Q,(e), UQS eventually then V V € Q”(f(e)), Vaf(S)
eventually, i.e., S »F e = f® S = f(e) for some [ > k. O

Proposition 3.14. Let f : (X,7) — (Y, 6) be a mapping where (X, 7) and (Y,6) be
any two L-fuzzy topological spaces. If for any L-fuzzy net S, S —ke= fO5 = f(e)
for some l > k and for e € M (LX) then f is a gp-map.
Proof. If possible let f be not a gp-map, then 3 V' € LY such that
T(f7HV)) 2 8(V).

Then from the order dense property of L we can get ki, k2 € L such that

T(f~HV)) # k1 < k2 < 8(V).
Now 7(f~HV)) 2 k1 = Aeqi1nQ(e, fTHV)) 2 ke € M(LX)
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= 3 e e M(LX) such that e°q f~1(V) and Q% fHV)) 2 k1

= V{r(U); aU c f[TH(V)} 2 k

= VU € LX with 7(U) > k1 and €°qU, U € f~1(V).

If we take D = Qy, (¢°) then as €® € M (LX) so D is a directed set with respect
to the binary relation ‘C’ and VU € D, U € f~Y(V), i.e., Ua{f~Y(V)}.

Let us now define a fuzzy net S : D — Pt(L¥) by the following rule: S(U) =
the L-fuzzy point having the support at where U q{f~!(V)}’ (if more than one such
support exist then take any one of them) and grade equal to the grade of {f~1(V)}/
at this support. Then

S(U) e {f7{ V)Y VYU € Dyi.e, S(U)Af (V) VYU € D= f(S(U)) 4V VYU € D.

Also e®q f71(V) = f(e®)QV where §(V) > ko. Therefore, §(V) > ky and f(e)qQV
but f(S(U)) 4V for U € D imply that if f © S —; f(e°) then I’ > ky. But from
the construction of S, if U € Q, (°) then YV > U, S(V) QU (since V > U means
V C U and from the construction of S we have S(V)qQV VV € D so S(V)qU),
i.e., SQU eventually.

Hence if S —* €0 then &' < k;.

So, k' <ki<ko<l = kK<l = k>1. O
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