FUZZY CONVERGENCE THEORY-I

K. K. Mondal and S. K. Samanta

ABSTRACT. The main objective of this paper is to introduce the gradation of neighbourhoodness in L-fuzzy topology and to introduce the fuzziness in the concept of convergence of L-fuzzy nets.

0. Introduction

The study of neighbourhood systems and convergence of nets and filters in a Chang fuzzy topological space (CFTS) was initiated by Pu & Liu [6] and Liu & Luo [13]. Later on Chang fuzzy topology was generalised by Höhle [5], Sostak [11]. Chattopadhyay, Hazra & Samanta [2] introduced gradation of openness and studied fuzzy topology. Side by side the study of graded neighbourhood system was also in progress. In Ying [12] introduced the degree to which a fuzzy point x_{λ} belongs to a fuzzy subset A of X by $m(x_{\lambda}, A) = \min(1, 1 - \lambda + A(x))$ and gave the idea of graded neighbourhood on a CFTS. Using this concept of graded neighbourhood Ramadan, El Deeb & Abdel-Sattar [9] studied the convergence of a net in a smooth topological space (a smooth topological space is similar to fuzzzy topologys as defined by Höhle [5], Sostak [11] and Chattopadhyay, Hazra & Samanta [2] using crisp points as well as fuzzy points.

Apart from Ying [12], Demirci [4] introduced the idea of graded neighbourhood in smooth topological space in a different approach but restricted himself to the I-valued fuzzy sets where I = [0, 1].

In this paper we have generalised the idea of graded neighbourhood system for L-fuzzy sets, where L is a F-lattice. Also we take the definition of neighbourhood. system slightly different from those of Demirci [4].

Received by the editors August 17, 2004 and, in revised form, February 5, 2005. 2000 Mathematics Subject Classification. 54A40, 03E72.

Key words and phrases. Gradation of openness; fuzzy topology; gradation of closedness; gradation of neighbourhoodness; L-fuzzy closure operator; fuzzy net.

In section 2 of the present paper we have studied the characteristic properties of graded neighbourhood system named as "gradation of q-neighbourhoodness" in L-fuzzy setting.

In section 3 we have used this concept of graded neighbourhood to develop the concept of graded convergence of a fuzzy net. Relations between graded closure of a fuzzy set and graded convergence of a fuzzy net have also been studied.

1. NOTATION AND PRELIMINARIES

In this paper X denotes a nonempty set; unless otherwise mentioned, L denotes a completely distributive order dense complete lattice with an order reversing involution ℓ whereas $L_0 = L - \{0\}$. Let 0 and 1 denote the least and the greatest elements of L. L^X denotes the collection of all L-fuzzy subsets of X; $\operatorname{Pt}(L^X)$ denotes the set of all L-fuzzy points of X. By $\tilde{0}$ and $\tilde{1}$ we denote the constant L-fuzzy subsets of X taking values 0 and 1 respectively. For $p_x \in \operatorname{Pt}(L^X)$ and $A, B \in L^X$ we say

$$p_x \neq A$$
 if $p_x \notin A'$

and

$$A \neq B$$
 if $A \not\subseteq B'$.

For other notations we follow Liu & Luo [13].

Definition 1.1 (Sostak [11]). A function $\tau: L^X \to L$ is called an *L-fuzzy topology* on X if it satisfies the following conditions:

- (O1) $\tau(\tilde{0}) = \tau(\tilde{1}) = 1$
- (O2) $\tau(A_1 \wedge A_2) \ge \tau(A_1) \wedge \tau(A_2)$, for $A_1, A_2 \in L^X$
- (O3) $\tau(\vee_{i\in\Delta}A_i) \geq \wedge_{i\in\Delta}\tau(A_i)$ for any $\{A_i\}_{i\in\Delta}\subset L^X$.

The pair (X, τ) is called an *L-fuzzy topological space* and τ is called a gradation of openness (GO) on X.

Definition 1.2 (Sostak [11]). A function $\mathcal{F}:L^X\to L$ is called an L-fuzzy cotopology of X if it satisfies the following conditions:

- (C1) $\mathcal{F}(\tilde{0}) = \mathcal{F}(\tilde{1}) = 1$
- (C2) $\mathcal{F}(A_1 \vee A_2) \geq \mathcal{F}(A_1) \wedge \mathcal{F}(A_2)$, for $A_1, A_2 \in L^X$
- (C3) $\mathcal{F}(\bigwedge_{i\in\Delta}A_i)\geq \bigwedge_{i\in\Delta}\mathcal{F}(A_i)$ for any $\{A_i\}_{i\in\Delta}\subset L^X$.

The pair (X, \mathcal{F}) is called an *L-fuzzy co-topological space* and \mathcal{F} is called a *gradation* of closedness (GC) on X.

 \Box

2. Some results on graded neighbourhood system

Proposition 2.1. Let (X, τ) be an L-fuzzy topological space with τ as a gradation of openness on X and let $\tau_r = \{U \in L^X; \tau(U) \geq r\}$ then

- (1) τ_r is a Chang L-fuzzy topology for every $r \in L_0$,
- (2) $\tau_r \subset \tau_s$ if $r \geq s$; $r, s \in L_0$, and
- $(3) \bigcap_{i \in \Delta} \tau_{r_i} = \tau_{\vee_{i \in \Delta} r_i}.$

Proof. (1) We have $\tau(\tilde{0}) = \tau(\tilde{1}) = 1$ so $\tilde{0}, \tilde{1} \in \tau_r \forall r \in L_0$.

For any
$$U_1, U_2 \in L^X, U_1, U_2 \in \tau_r \Rightarrow \tau(U_1), \tau(U_2) \geq r$$

$$\Rightarrow \tau(U_1 \wedge U_2) \geq \tau(U_1) \wedge \tau(U_2), \quad \text{by (O2)}$$

$$\geq r.$$

Finally, $U_i \in \tau_r \forall i \in \Delta \Rightarrow \tau(U_i) \geq r, \forall i \in \Delta$. So,

$$\tau\left(\vee_{i\in\Delta} U_i\right) \ge \wedge_{i\in\Delta}\tau(U_i), \text{ by (O3)}$$

 $\ge r.$

Hence τ_r is a Chang L-fuzzy topology for every $r \in L_0$.

(2) and (3) are straightforward.

Proposition 2.2. Let $\{T_r\}_{r\in L_0}$ be a collection of fuzzy subsets of X satisfying

- (1) T_r is a Chang L-fuzzy topology on X for each $r \in L_0$,
- (2) $T_r \subseteq T_s$ if $r \ge s$; $r, s \in L_0$ then the mapping $\tau : L^X \to L$ defined by $\tau(A) = \bigvee \{r; A \in T_r\}$ is an L-fuzzy topology on X and if further T_r satisfies,
- (3) $\bigcap_{i \in \Delta} T_{r_i} = T_{\vee_{i \in \Delta} r_i}$ then the collection $\tau_r = \{U \in L^X; \tau(U) \geq r\}$ is identical with T_r for every $r \in L_0$.

Proof. (i) $\tilde{0}, \tilde{1} \in T_r \ \forall \ r \in L_0 \ \Rightarrow \ \tau(\tilde{0}) = \tau(\tilde{1}) = 1.$

- (ii) $A_1 \in T_{r_1}$, $A_2 \in T_{r_2} \Rightarrow A_1, A_2 \in T_{r_1 \wedge r_2}$, by (2) $\Rightarrow A_1 \wedge A_2 \in T_{r_1 \wedge r_2}$, by (1) $\Rightarrow \tau(A_1 \wedge A_2) \geq r_1 \wedge r_2$, by the definition of τ . As L is completely distributive so $\tau(A_1 \wedge A_2) \geq \tau(A_1) \wedge \tau(A_2)$.
 - (iii) Let $A_i \in T_{r_i}$; $i \in \Delta$.

If $\bigwedge_{i \in \Delta} r_i = 0$ then obviously $\tau(\bigvee_{i \in \Delta} A_i) \geq \bigwedge_{i \in \Delta} r_i$.

So let $\bigwedge_{i\in\Delta} r_i \neq 0$ then $A_i \in T_{\bigwedge_{i\in\Delta} r_i}$, by (2) $\forall i \in \Delta \Rightarrow \bigvee_{i\in\Delta} A_i \in T_{\bigwedge_{i\in\Delta} r_i}$, by (1) $\Rightarrow \tau(\bigvee_{i\in\Delta} A_i) \geq \bigwedge_{i\in\Delta} r_i$, by the definition of τ . Again as L is completely distributive so $\tau(\bigvee_{i\in\Delta} A_i) \geq \bigwedge_{i\in\Delta} \tau(A_i)$.

Next we want to show that $T_r = \tau_r$ for $r \in L_0$. $A \in T_r \Rightarrow \bigvee \{k; A \in T_k\} \geq r \Rightarrow \tau(A) \geq r \Rightarrow A \in \tau_r$ for $r \in L_0$. So $T_r \subseteq \tau_r \forall r \in L_0$. Again $B \in \tau_r \Rightarrow \tau(B) \geq r \Rightarrow \bigvee \{k \in L_0; B \in T_k\} \geq r$.

Let $S = \{k \in L_0; B \in T_k\}$. Then $B \in T_k$ for $k \in S \Rightarrow B \in \cap_{k \in S} T_k = T_{\vee_{k \in S}} = T_s$ and $s \geq r$.

So,
$$B \in T_r \Rightarrow \tau_r \subset T_r$$
 for $r \in L_0$.

Definition 2.3. Let (X, τ) be L-fuzzy topological space and let $Q : \operatorname{Pt}(L^X) \times L^X \to L$ be a mapping defined by $Q(p_x, A) = \bigvee \{\tau(U); \ p_x \neq U \subset A\}$. Then Q is said to be a gradation of Q-neighbourhoodness.

Proposition 2.4. Let Q be a gradation of q-neighbourhoodness in an L-fuzzy topological space (X, τ) . Then

(QN1):
$$Q(p_x, \tilde{1}) = 1$$
, $Q(p_x, \tilde{0}) = 0$ for $p_x \in Pt(L^X)$,

(QN2):
$$Q(p_x, A) \leq Q(p_x, B)$$
 if $A, B \in L^X$, $A \subseteq B$,

(QN3):
$$Q(p_x, A \wedge B) = Q(p_x, A) \wedge Q(p_x, B)$$
 for $p_x \in M(L^X)$ and $A, B \in L^X$.

(QN4):
$$Q(p_x, A) \not\leq k \Rightarrow \exists B_p \in L^X \text{ such that } p_x \triangleleft B_p \subseteq A \text{ and } \land \{Q(r_y, B_p); r_y \in \operatorname{Pt}(L^X); r_y \triangleleft B_p\} \not\leq k.$$

Proof. The proof of (QN1)-(QN2) is straightforward.

(QN3):
$$Q(p_x, A \wedge B) \leq Q(p_x, A) \wedge Q(p_x, B)$$
 is obvious from (QN2).

Next let $p_x \, q \, U \subset A$ and $p_x \, q \, V \subset B$ then as $p_x \in M(L^X)$ so,

$$p_x \operatorname{\mathsf{q}}(U \wedge V) \subseteq A \wedge B \Rightarrow Q(p_x, A \wedge B) \ge \tau(U \wedge V) \ge \tau(U) \wedge \tau(V).$$

Since L is completely distributive so $Q(p_x, A \wedge B) \geq Q(p_x, A) \wedge Q(p_x, B)$. So, $Q(p_x, A \wedge B) = Q(p_x, A) \wedge Q(p_x, B)$.

$$\begin{aligned} (\mathrm{QN4}): \quad Q(p_x,A) \not \leq k \Rightarrow \vee \{\tau(U); \ p_x \, \mathsf{q} \, U \subset A\} \not \leq k \\ \Rightarrow \exists U_1 \in L^X \ \text{such that} \ p_x \, \mathsf{q} \, U_1 \subset A \ \text{and} \ \tau(U_1) \not \leq k. \end{aligned}$$

Taking $B_p=U_1$ we have $\forall \ r_y \not\in B_p, \ r_y \not\in B_p \subset B_p \ \text{and} \ \tau(B_p) \not\leq k$. Now

$$\begin{split} Q(r_y,B_p) &= \vee \{\tau(U); r_y \neq U \subset B_p\} \geq \tau(B_p) \ \text{for} \ r_y \neq B_p \\ &\Rightarrow \wedge_{(r_y} \neq_{B_p)} Q(r_y,B_p) \geq \tau(B_p). \end{split}$$
 So, $\tau(B_p) \not\leq k \Rightarrow \wedge_{(r_y} \neq_{B_p)} Q(r_y,B_p) \not\leq k.$

Proposition 2.5. Let $Q: Pt(L^X) \times L^X \to L$ be a mapping satisfying (QN1)-(QN3) of Proposition 2.4. Let $\bar{\tau}: L^X \to L$ be defined by

$$\bar{\tau}(A) = \wedge \{Q(p_x, A); p_x \in M(L^X) \text{ and } p_x \neq A\}.$$

Then $(X, \bar{\tau})$ forms an L-fuzzy topological space. If further the condition (QN4) of Proposition 2.4 is satisfied by Q then the mapping $\bar{Q}: Pt(L^X) \times L^X \to L$ defined by $\bar{Q}(p_x, A) = \bigvee \{\bar{\tau}(U); p_x \, Q \, U \subset A\}$ is identical with Q.

Proof. Verification of (O1) is straightforward.

$$\begin{aligned} \text{(O2): } \bar{\tau}(A \wedge B) &= \wedge \big\{ Q(p_x, A \wedge B); \ p_x \in M(L^X); \ p_x \, \mathsf{Q}(A \wedge B) \big\} \\ &= \wedge \big\{ Q(p_x, A) \wedge Q(p_x, B); \ p_x \in M(L^X); \ p_x \, \mathsf{Q}(A \wedge B) \big\}, \text{ by (QN3)} \\ &= \big\{ \wedge \big[Q(p_x, A); \ p_x \in M(L^X); \ p_x \, \mathsf{Q}(A \wedge B) \big] \big\} \\ &\qquad \qquad \wedge \big\{ \wedge \big[Q(p_x, B); \ p_x \in M(L^X); \ p_x \, \mathsf{Q}(A \wedge B) \big] \big\} \\ &\geq \big\{ \wedge \big[Q(p_x, A); \ p_x \in M(L^X); \ p_x \, \mathsf{Q}(A) \big\} \big\} \\ &\qquad \qquad \wedge \big\{ \wedge \big[Q(p_x, B); \ p_x \in M(L^X); \ p_x \, \mathsf{Q}(B) \big] \big\} \\ &= \bar{\tau}(A) \wedge \bar{\tau}(B). \end{aligned}$$

(O3): For any $p_x \in M(L^X)$, $p_x \neq (\forall_{i \in \Delta} A_i) \Rightarrow p_x \neq A_j$ for some $j \in \Delta$. Then $Q(p_x, \forall_{i \in \Delta} A_i) \geq Q(p_x, A_j)$, by (QN2), $\geq (p_x, q_{A_i})Q(r_y, A_j)$, $r_y \in M(L^X)$ as $p_x \neq A_j$

 $= \bar{\tau}(A_j) \ge \wedge_{i \in \Delta} \bar{\tau}(A_j).$ Since this is true for all $p_x \in M(L^X)$ with $p_x \neq (\vee_{i \in \Delta} A_i)$ so

$$\wedge \{Q(p_x, \vee_{i \in \Delta} A_i); \ p_x \in M(L^X); \ p_x \, \mathsf{q}(\vee_{i \in \Delta} A_i)\} \ge \wedge_{i \in \Delta} \bar{\tau}(A_i),$$

$$i. e., \bar{\tau}(\vee_{i\in\Delta} A_i) \geq \wedge_{i\in\Delta}\bar{\tau}(A_i)$$

To prove the last part of the proposition let us suppose that Q satisfies the condition (QN4) of Proposition 2.4. If $\bar{Q}(p_x, A) = 0$ then obviously $\bar{Q}(p_x, A) \leq Q(p_x, A)$.

So let us suppose $\bar{Q}(p_x, A) > 0$.

Then

$$\bar{Q}(p_x, A) \not\leq m \Rightarrow \forall \{\bar{\tau}(U); \ p_x \neq U \subset A\} \not\leq m$$

 $\Rightarrow \exists U_p \in L^X \text{ such that } p_x \neq U_p \subset A \text{ and } \bar{\tau}(U_p) \not\leq m.$

Now

$$\bar{\tau}(U_p) \not\leq m \Rightarrow \bigwedge \left\{ Q(r_y, U_p); \ r_y \in M(L^X); \ r_y \neq U_p \right\} \not\leq m$$

$$\Rightarrow Q(r_y, U_p) \not\leq m \text{ and } r_y \in M(L^X) \text{ with } r_y \neq U_p.$$

Again as

$$p_x \neq U_p \Rightarrow p \not\leq U_p'(x)$$

 $\Rightarrow \exists s \in M(L) \text{ such that } s \leq p \text{ but } s \not\leq U_p'(x)$
[since $M(L)$ is join generating subset of L]
 $\Rightarrow s_x \neq U_p \text{ and } s_x \in M(L^X)$
 $\Rightarrow Q(s_x, U_p) \not\leq m$
 $\Rightarrow Q(p_x, U_p) \not\leq m \text{ [since } p_x \geq s_x \Rightarrow Q(p_x, U_p) \geq Q(s_x, U_p)]$
 $\Rightarrow Q(p_x, A) \not\leq m \text{ [since } U_p \subset A].$

Hence

$$\bar{Q}(p_x, A) \le Q(p_x, A) \tag{*}$$

Again

$$Q(p_x,A) \not \leq \alpha$$

$$\Rightarrow \exists \ B_p \in L^X \text{ such that } p_x \neq B_p \subset A \text{ and}$$

$$\land \left\{ Q(r_y,B_p); \ r_y \in \operatorname{Pt}(L^X); \ r_y \neq B_p \right\} \not \leq \alpha.$$

$$\Rightarrow \exists \ B_p \in L^X \text{ such that } p_x \neq B_p \subset A \text{ and } \bar{\tau}(B_p) \not \leq \alpha$$

$$\Rightarrow \bigvee \{\bar{\tau}(U); \ p_x \neq U \subset A\} \not \leq \alpha$$

$$\Rightarrow \bar{Q}(p_x,A) \not \leq \alpha.$$

Hence

$$Q(p_x, A) \le \bar{Q}(p_x, A). \tag{**}$$

So,
$$Q(p_x, A) = \bar{Q}(p_x, A)$$
 for $p_x \in Pt(L^X)$ and $\forall A \in L^X$.

Lemma 2.6. If for every $p_x \in M(L^X)$ with $p_x \neq A$ we choose any $U_{p_x} \in L^X$ with $p_x \neq U_{p_x} \subseteq A$ then $A = \bigvee \{U_{p_x}; p_x \in M(L^X) \text{ and } p_x \neq A\}.$

Proof. $\bigvee \{U_{p_x}; \ p_x \in M(L^X) \text{ and } p_x \neq A\} \subseteq A$ is obvious.

If possible let $\vee \{U_{p_x}; p_x \in M(L^X) \text{ and } p_x \neq A\}$ be a proper subset of A then $\exists z \in X \text{ such that}$

$$A(z) > (\vee \{U_{p_x}; \ p_x \in M(L^X) \text{ and } p_x \neq A \})(z)$$

$$\Rightarrow A'(z) < (\vee \{U_{p_x}; \ p_x \in M(L^X) \text{ and } p_x \neq A \})'(z).$$

As M(L) is a join generating set of L so

$$\exists k \in M(L) \text{ such that } k \not\leq A'(z) \text{ but } k \leq \left(\vee \{U_{p_x}; \ p_x \in M(L^X) \text{ and } p_x \neq A \} \right)'(z)$$

$$\Rightarrow k_z \neq A \text{ but } k_z \not\in \left(\vee \{U_{p_x}; \ p_x \in M(L^X) \text{ and } p_x \neq A \} \right)$$

$$\Rightarrow k_z \neq A \text{ but } k_z \not\in U_{p_x} \forall p_x \in M(L^X) \text{ with } p_x \neq A,$$

which is a contradiction to the given condition.

Proposition 2.7. Let Q be a gradation of q-neighbourhoodness in an L-fuzzy topological space (X, τ) and $\bar{\tau}: L^X \to L$ be defined by

$$\bar{\tau}(A) = \wedge \{Q(p_x, A); \ p_x \in M(L^X); \ p_x \neq A\}$$

then $\bar{\tau}$ is an L-fuzzy topology on X and $\bar{\tau} = \tau$.

Proof. As Q is a gradation of q-neighbourhoodness in (X, τ) , so all the conditions of Proposition 2.4 are satisfied by Q. So, by Proposition 2.5 we can say that $\tilde{\tau}$ is an L-fuzzy topology on X.

Also
$$Q(p_x, A) = \bigvee \{ \tau(U); \ p_x \neq U \subset A \} \geq \tau(A) \ \forall \ p_x \in \operatorname{Pt}(L^X) \ \text{with} \ p_x \neq A$$

 $\Rightarrow \land \{ Q(p_x, A); \ p_x \in M(L^X) \ \text{and} \ p_x \neq A \} \geq \tau(A) \ \Rightarrow \ \bar{\tau}(A) \geq \tau(A) \ \forall \ A \in L^X.$
 $\Rightarrow \ \bar{\tau} \geq \tau.$

Next, if $A = \tilde{0}$ then \exists no $p_x \in M(L^X)$ such that $p_x q \tilde{0}$ so $\bar{\tau}(\tilde{0}) = 1 = \tau(\tilde{0})$.

If $A \neq \tilde{0}$ then for each $p_x \in M(L^X)$ with $p_x \neq A$ if we take any U_{p_x} satisfying $p_x \neq U_{p_x} \subseteq A$ then by Lemma 2.6 $A = \cup \{U_{p_x}; p_x \in M(L^X) \text{ and } p_x \neq A\}$. So,

$$\tau(A) = \tau\left(\cup \{U_{p_x}; \ p_x \in M(L^X) \text{ and } p_x \neq A\}\right) \ge \wedge \{\tau(U_{p_x}); \ p_x \in M(L^X); \ p_x \neq A\}.$$

$$\tag{1}$$

Again as L is completely distributive and the relation (1) is true for any U_{p_x} satisfying $p_x \neq U_{p_x} \subseteq A$ it follows that $\tau(A) \geq \wedge \{Q(p_x, A); p_x \in M(L^X) \text{ and } p_x \neq A\}$, $i. e., \tau(A) \geq \bar{\tau}(A)$. As $A \in L^X$ is arbitrary, $\tau \geq \bar{\tau}$.

Remark 2.8. It may be noted that for $r \in L_0$ and $e \in Pt(L^X)$, $Q_r(e) = \{A \in L^X; Q(e,A) \geq r\}$ is not necessarily a q-neighbourhood system of e with respect to the Chang fuzzy topology τ_r which is shown by the following example.

Example 2.9. Let $X = \{0, 1, 2, 3, \ldots\}$, $L = \mathcal{I} = \{(r, s) \in I \times I; r + s \leq 1\}$ and the P.O relation ' \leq ' in \mathcal{I} is defined as $(r_1, s_1) \leq (r_2, s_2) \Leftrightarrow r_1 \leq r_2$ and $s_1 \geq s_2$, 'V' and ' \wedge ' are defined by

$$(r_1, s_1) \lor (r_2, s_2) = (r_1 \lor r_2, s_1 \land s_2)$$
 and $(r_1, s_1) \land (r_2, s_2) = (r_1 \land r_2, s_1 \lor s_2)$

respectively.

Let

$$A_n(x) = \begin{cases} \left(0.1 + \frac{1}{n+2}, 0.9 - \frac{1}{n+2}\right) & \text{if } x \ge n \text{ and } n = 1, 2, 3, \dots \\ \left(\frac{1}{2}, \frac{1}{2}\right) & \text{if } x = 0 \\ \left(0, 1\right) & \text{elsewhere.} \end{cases}$$

Then $\{A_n\}$ is a monotone decreasing and $\{A'_n\}$ is a monotone increasing sequence of L-fuzzy subsets of X.

Let $B \in L^X$ be defined by

$$B(x) = \begin{cases} \left(\frac{1}{2}, \frac{1}{2}\right) & \text{if } x = 0\\ (1, 0) & \text{if } x > 0. \end{cases}$$

And let $\tau: L^X \to L$ be defined by

$$\tau(A_n) = \left(0.5 - \frac{1}{n+2}, 0.5 + \frac{1}{n+2}\right),\,$$

for n = 1, 2, 3, ... and

$$\tau(A'_n) = \left(0.5 + \frac{1}{n+2}, 0.5 - \frac{1}{n-2}\right),\,$$

for n = 1, 2, 3, ...

 $\tau(\tilde{0}) = \tau(\tilde{1}) = (1,0), \ \tau(B) = (0.6,0.4) \ \text{and} \ \tau(A) = (0,1) \ \text{for any other L-fuzzy subsets A of X. Then τ is an L-fuzzy topology on X. <math>Q\big((0.6,0.4)_0,A_1\big) = (0.5,0.5),$ i. e., $A_1 \in Q_{(0.5,0.5)}, \big((0.6,0.4)_0\big) \ \text{but } \exists \ \text{no } U \in \tau_{(0.5,0.5)} \ \text{such that } (0.6,0.4)_0 \ \text{q } U \subset A_1.$ Hence $Q_{(0.5,0.5)}\big((0.6,0.4)_0\big)$ is not a q-neighbourhood system of $(0.6,0.4)_0$ with

Hence $Q_{(0.5,0.5)}((0.6,0.4)_0)$ is not a q-neighbourhood system of $(0.6,0.4)_0$ with respect to the Chang fuzzy topology $\tau_{(0.5,0.5)}$.

Remark 2.10. We shall denote the q-neighbourhood system of e with respect to the Chang fuzzy topology τ_r by $\tilde{Q}_r(e)$, i. e., $\tilde{Q}_r(e) = \{U \in L^X; \exists V \in \tau_r \text{ satisfying } e \, \mathsf{q} \, V \subset U\}$.

Definition 2.11. Let (X, \mathcal{F}) be an L-fuzzy co-topological space with \mathcal{F} as a GC on X. For each $r \in L_0$ and for each $A \in L^X$ we define

$$cl(A,r) = \land \{D \in L^X; A \subseteq D; D \in \mathcal{F}_r\} \text{ where } \mathcal{F}_r = \{C \in L^X; \mathcal{F}(C) \ge r\}.$$

cl is said to be L-fuzzy closure operator in (X, \mathcal{F}) .

Proposition 2.12. Let (X, \mathcal{F}) be an L-fuzzy co-topological space with \mathcal{F} as a GC on X and let $\operatorname{cl}: L^X \times L_0 \to L^X$ be the L-fuzzy closure operator in (X, \mathcal{F}) where L is a completely distributive order dense and complete lattice with an order reversing involution '. Then

(CO1):
$$\operatorname{cl}(\tilde{0}, r) = \tilde{0}; \ \operatorname{cl}(\tilde{1}, r) = \tilde{1} \ \forall \ r \in L_0.$$

(CO2):
$$cl(A, r) \supseteq A, \ \forall \ A \in L^X \ and \ \forall \ r \in L_0.$$

(CO3):
$$cl(A, r) \subseteq cl(A, s \ if \ r \le s$$
.

(CO4):
$$cl(A_1 \vee A_2, r) = cl(A_1, r) \vee cl(A_2, r), \ \forall \ r \in L_0.$$

(CO5):
$$\operatorname{cl}(\operatorname{cl}(A, r), r) = \operatorname{cl}(A, r), \ \forall \ r \in L_0.$$

(CO6): If
$$l = \vee \{r \in L_0; \operatorname{cl}(A, r) = A\}$$
 then $\operatorname{cl}(A, l) = A$.

The proof is straightforward.

Proposition 2.13. Let L be a completely distributive order dense and complete lattice with an order reversing involution ' and $\operatorname{cl}: L^X \times L_0 \to L^X$ be a mapping satisfying (CO1)-(CO4) of Proposition 2.12. Let $\bar{\mathcal{F}}: L^X \to L$ be a mapping defined by $\bar{\mathcal{F}}(A) = \bigvee \{r \in L_0; \operatorname{cl}(A,r) = A\} \ \forall \ A \in L^X \ \text{then } \bar{\mathcal{F}} \text{ is a } GC \text{ on } X \text{ and } \operatorname{cl} = \operatorname{cl}_{\bar{\mathcal{F}}} \text{ if and only if (CO5) and (CO6) are satisfied by } \operatorname{cl}.$

Proof. Obviously
$$\bar{\mathcal{F}}(\tilde{0}) = \bar{\mathcal{F}}(\tilde{1}) = 1$$
. Let $\operatorname{cl}(A_1, r_1) = A_1$ and $\operatorname{cl}(A_2, r_2) = A_2$ then

$$cl(A_1 \lor A_2, r_1 \land r_2) = cl(A_1, r_1 \land r_2) \lor cl(A_2, r_1 \land r_2) \le cl(A_1, r_1) \lor cl(A_2, r_2)$$
$$= A_1 \lor A_2 \Rightarrow \tilde{\mathcal{F}}(A_1 \lor A_2) \ge r_1 \land r_2.$$

As L is completely distributive so $\bar{\mathcal{F}}(A_1 \vee A_2) \geq \bar{\mathcal{F}}(A_1) \wedge \bar{\mathcal{F}}(A_2)$.

Let
$$\operatorname{cl}(A_i, r_i) = A_i \ \forall i \in \Delta \text{ then}$$

$$\operatorname{cl}\left(\wedge_{i\in\Delta} A_i, \wedge_{i\in\Delta} r_i\right) \leq \operatorname{cl}\left(A_i, \wedge_{i\in\Delta} r_i\right), \ \forall \ i\in\Delta, \ \text{by (CO4)}$$
$$\leq \operatorname{cl}(A_i, r_i), \ \forall \ i\in\Delta, \ \text{by (CO3)}$$
$$= A_i, \ \forall \ i\in\Delta$$

$$\Rightarrow$$
 cl $(\land_{i \in \Delta} A_i, \land_{i \in \Delta} r_i) \leq \land_{i \in \Delta} A_i$

$$\Rightarrow \bar{\mathcal{F}}(\wedge_{i\in\Delta} A_i) \geq \wedge_{i\in\Delta} r_i.$$

As L is completely distributive so $\bar{\mathcal{F}}(\wedge_{i\in\Delta} A_i) \geq \wedge_{i\in\Delta} \bar{\mathcal{F}}(A_i)$.

Now to prove the second part, suppose cl satisfies conditions (CO5) and (CO6) in addition to the conditions (CO1)–(CO4) of Proposition 2.12.

First we shall prove $\bar{\mathcal{F}}(D) \geq l \iff \operatorname{cl}(D,l) = D \ \forall \ l \in L_0. \ \bar{\mathcal{F}}(D) \geq l \text{ implies}$ $\forall \{r \in L_0; \ \operatorname{cl}(D,r) = D\} \geq l.$

Let
$$S = \{r \in L_0; \operatorname{cl}(D, r) = D\}$$
 then $\vee \{r; r \in S\} \ge l$.

Again
$$cl(D, \vee_{r \in S} r) = D$$
, by (CO6), $\Rightarrow cl(D, l) = D$, by (CO3).

Obviously
$$\operatorname{cl}(D, l) = D \Rightarrow \bar{\mathcal{F}}(D) \geq l$$
,

Thus
$$\tilde{\mathcal{F}}(D) \geq l \iff \operatorname{cl}(D, l) = D$$
.

Now
$$\operatorname{cl}_{\bar{\mathcal{F}}}(A,l) = \wedge \{D \supseteq A; \ D \in \bar{\mathcal{F}}_l\} = \wedge \{D \supseteq A; \ \operatorname{cl}(D,l) = D\} \leq \operatorname{cl}(A,l).$$
 (as: $\operatorname{cl}(A,l) \supseteq A$ and $\operatorname{cl}(\operatorname{cl}(A,l),l) = \operatorname{cl}(A,l)$, by (CO5)). Again $\operatorname{cl}(D,l) = D \supseteq A \Rightarrow \operatorname{cl}(D,l) \geq \operatorname{cl}(A,l)$, by (CO4) So, $\operatorname{cl}_{\bar{\mathcal{F}}}(A,l) = \wedge \{D \supseteq A; \ \operatorname{cl}(D,l) = D\} = \wedge \{\operatorname{cl}(D,l) = D \supseteq A\} \geq \operatorname{cl}(A,l).$ Hence $\operatorname{cl}_{\bar{\mathcal{F}}}(A,l) = \operatorname{cl}(A,l)$. Converse is obvious.

Proposition 2.14. A fuzzy point $p_x \in cl(A, m) \iff \forall U \in L^X$ satisfying $p_x \neq U \not\in A$ implies $\tau(U) \not\geq m$.

Proof. Let $p_x \in cl(A, m)$. If possible let $\exists U \in L^X$ such that $p_x \not\in dA$ and $\tau(U) \geq m$.

Then $p_x \notin U^c$ and $A \subset U^c$, $U^c \in \mathcal{F}_m \implies \operatorname{cl}(A, m) \subset U^c$. But $p_x \notin U^c \supset \operatorname{cl}(A, m)$ is a contradiction.

Conversely, let the given condition be satisfied. Put cl(A, m) = B, then clearly $B \in \mathcal{F}_m$. If possible let $p_x \notin B$ then $p_x \neq B$. So taking $B^c = U$ we see that $\tau(U) \geq m$ and $p_x \neq U \not\in A$ (since $A \subset B$) which is a contradiction to our assumption. So $p_x \in cl(A, m)$.

Corollary 2.15. $p_x \notin cl(A, m) \iff \exists \text{ at least one } U \in \tilde{Q}_m(p_x) \text{ such that } U \not\in A.$

Proposition 2.16. Let (X,τ) be an L-fuzzy topological space with L as an order dense chain and cl be the closure operator on X. Then $p_x \in \operatorname{cl}(A,m) \iff \forall U$ satisfying $p_x \not\in \operatorname{l}(A, M) \not\in \operatorname{local}(A, M)$ at least one L-fuzzy point. $r_y \not\in \operatorname{local}(A, M) \not\in \operatorname{local}(A, M)$

Proof. $p_x \in cl(A, m)$

- $\iff \forall U \text{ satisfying } p_x \neq U \not\in A \text{ implies } \tau(U) \not\geq m$
- $\iff \forall U \text{ satisfying } p_x \neq U \not\in A \text{ implies } \tau(U) < m \text{ (as } L \text{ is a chain)}$
- $\iff \forall U \text{ satisfying } p_x \neq U \not A, \land_{(r_y, q_U)} Q(r_y, U) < m$
- $\iff \forall U \text{ satisfying } p_x \neq U \not A \exists \text{ at least one } r_y \neq U \text{ such that } Q(r_y, U) < m. \quad \Box$

Proposition 2.17. In an L-fuzzy topological space $(X, \tau), p_x \in cl(A, m) \iff \forall U \in \tau_m, p_x \neq U \implies U \neq A$.

Proof. Let $p_x \in \operatorname{cl}(A, m)$ and let $\exists U \in \tau_m$ such that $p_x \not\in U$ but $U \not\in A$ then $U^c \in \mathcal{F}_m$ and $p_x \not\in U^c$ but $A \subseteq U^c$. Now $A \subseteq U^c$ and $U^c \in \mathcal{F}_m \Rightarrow \operatorname{cl}(A, m) \subseteq U^c$. Hence $p_x \in \operatorname{cl}(A, m)$ but $p_x \not\in U^c$ is a contradiction.

Conversely, let the given condition be satisfied and if possible let $p_x \notin cl(A, m)$. Put cl(A, m) = B then $p_x \notin B \Rightarrow p_x \neq B^c$ also $B \in \mathcal{F}_m \Rightarrow B^c \in \tau_m$. So $B^c \in \tau_m$ and $p_x \neq B^c$ but $B^c \notin A$ (since $A \subset B$) is a contradiction. **Proposition 2.18.** In an L-fuzzy topological space (X, τ) the following statements are equivalent

- (i) $p_x \in \operatorname{cl}(A, m)$
- (ii) $\forall U \in \tau_m, p_x \mathbf{Q}U \Rightarrow U \mathbf{Q}A$
- (iii) $U \in \tilde{Q}_m(p_x) \Rightarrow U \neq A$.

Proof. (i) \iff (ii), by Proposition 2.17.

 $(ii) \iff (iii).$

For, let (ii) hold and let $U \in \tilde{Q}_m(p_x)$ then $\exists V \in \tau_m$ such that $p_x \neq V \subset U \Rightarrow V \neq A$, by (ii) $\Rightarrow U \neq A$ (since $V \subset U$), i. e., (ii) \Rightarrow (iii).

Conversely, let (iii) hold and let $U \in \tau_m$ with $p_x \neq U$ then $U \in \tilde{Q}_m(p_x) \Rightarrow U \neq A$, by (iii), *i. e.*, (iii) \Rightarrow (ii).

3. Fuzzy Net and its Convergence

Proposition 3.2. For any fuzzy net S in an L-fuzzy topological space (X, τ) ,

- (i) $S \rightarrow^l e \& S \rightarrow_k e \Rightarrow k \not> l$
- (ii) $S \infty^l e \& S \infty_k e \Rightarrow k \not> l$.

Proof. (i) Let $\mathcal{U} = \{r \in L_0; \forall U \in \tilde{Q}_r(e), U \neq S \text{ eventually}\}\$ and $\mathcal{V} = \{r \in L_0; \exists V \in \tilde{Q}_r(e), V \not\in S \text{ frequently}\}\$. Then obviously $\mathcal{U} \cap \mathcal{V} = \emptyset$ and $\mathcal{U} \cup \mathcal{V} = L_0$ Also from the definition of upper limit and lower limit we have $l' = \wedge \mathcal{U}$ and $k' = \vee \mathcal{V}$. If

 $\land \mathcal{U} > \lor \mathcal{V}$ then $\exists m \in L_0$ such that $\land \mathcal{U} > m > \lor \mathcal{V} \implies m \notin \mathcal{U} \& m \notin \mathcal{V}$, which is a contradiction that $\mathcal{U} \cup \mathcal{V} = L_0$. So, $\land \mathcal{U} > \lor \mathcal{V}$ is not possible, i. e., $l' \not> k' \implies k \not> l$.

Proposition 3.3. If in addition L is a chain then in the L-fuzzy topological space (X, τ) ,

- (i) $S \to^l e$ and $S \to_k e \Rightarrow k = l$
- (ii) $S \infty^l e$ and $S \infty_k e \Rightarrow k = l$.

Proof. (i) As in the above Proposition, if we consider the partitions \mathcal{U} and \mathcal{V} of L_0 , and $l' = \wedge \mathcal{U}, k' = \vee \mathcal{V}$ then we have $k \leq l$. If possible let k < l then $k' > l' \Rightarrow \exists m \in L_0$ such that $k' > m > l' \Rightarrow \vee \mathcal{V} > m > \wedge \mathcal{U} \Rightarrow m \in \mathcal{V}$ and $m \in \mathcal{U}$, which is a contradiction that $\mathcal{U} \cap \mathcal{V} = \emptyset$. Hence $k \nleq l$.

Remark 3.4. If L be an order dense chain then in the L-fuzzy topological space (X, τ) then $S \infty^l e$ and $S \infty_l e$ together will be commonly denoted by $S \infty(l) e$ Similarly, $S \to^l e$ and $S \to_l e$ together will be commonly denoted by $S \to (l) e$.

Proposition 3.5. Let (X, τ) be an L-fuzzy topological space $S = \{S(n); n \in D\}$ a fuzzy net in X and $e, f \in Pt(L^X)$. Then

- (i) $S \to^l e \implies S \infty^k e \text{ for some } k \ge l; \ k, l \in L.$
- (ii) $S \infty^l e \ge f \implies S \infty^k f$ for some $k \ge l$; $k, l \in L$.
- (iii) $S \to^l e \geq f \implies S \to^k f \text{ for some } k \geq l; \ k, l \in L.$
- (iv) $S \infty_k e \Rightarrow S \rightarrow_l e \text{ for some } l \leq k; \ k, l \in L.$
- (v) $S \infty_k e \leq f \implies S \infty_k f$ for some $l \leq k$; $k, l \in L$.
- $\text{(vi) } S \to_k e \leq f \ \Rightarrow \ S \to_l f \text{ for some } l \leq k; \ k,l \in L.$

The proof is straightforward.

Definition 3.6 (Liu & Luo [13]). Let (X, τ) be an L-fuzzy topological space and $S: D \to \operatorname{Pt}(L^X), T: E \to \operatorname{Pt}(L^X)$ be two fuzzy nets in X. Call T a subnet of S or call S a parental net of T if \exists a mapping $N: E \to D$, called a cofinal selection on S, such that (i) $T = S \odot N$ (ii) for every $n_0 \in D \exists m_0 \in E$ such that $N(m) \geq n_0$ for $m \geq m_0$.

Proposition 3.7. Let (X, τ) be an L-fuzzy topological space, S be a fuzzy net in X and T be a subnet of S, $e \in Pt(L^X)$. Then

- (i) $S \to^l e \Rightarrow T \to^k e \text{ for some } k \ge l; l, k \in L.$
- (ii) $T\infty^l e \Rightarrow S\infty^k e \text{ for some } k \geq l; l, k \in L.$
- (iii) $T \to_k e \Rightarrow S \to_l e \text{ for some } l \leq k; k, l \in L.$
- (iv) $S \infty_k e \Rightarrow T \infty_l e \text{ for some } l \leq k ; k, l \in L.$

Proposition 3.8. Let (X, τ) be an L-fuzzy topological space with τ as a GO on X, S be a fuzzy net in X, Δ be the collection of all subnets of S, $e \in Pt(L^X)$. Then

- (1) $S \to^l e \Rightarrow l = \wedge_{T \in \Delta} \{r \in L; T \to^r e\}$
- (2) $S \infty^l e \Rightarrow l = \bigvee_{T \in \Delta} \{ r \in L; T \infty^r e \}.$
- (3) $S\infty(l)e \Rightarrow l = \bigvee_{T \in \Delta} \{r \in L; T \to (r)e \} \text{ if } L \text{ is a chain.}$
- (4) $S\infty(l)e \Rightarrow \exists a \text{ subnet } T \text{ of } S \text{ such that } T \to (l)e \text{ if } L \text{ is a chain.}$
- (5) $S \to_l e \Rightarrow l = \wedge_{T \in \Delta} \{r; T \to_r e\}.$
- (6) $S \infty_l e \Rightarrow l = \forall_{T \in \Delta} \{r \in L; T \infty_r e\}.$

The proof is straightforward.

Proof. (1) For any $T \in \Delta$, $T \to r$ e and $S \to l$ $e \Rightarrow r \geq l$. So,

$$l \le \bigwedge_{T \in \Delta} \{ r \in L; \ T \to^r e \}.$$

Again as a particular case taking T = S we get $l \ge \wedge_{T \in \Delta} \{r \in L; T \to^r e\}$.

Hence the proof.

The proof of (2) is similar to that of (1).

(3) Let $T: E \to \operatorname{Pt}(L^X)$ be a subnet of S such that $T \to^r e$ and $N: E \to D$ be the function given in the definition of subnet.

Then for every s > r', $U \in \tilde{Q}_s(e) \Rightarrow U \neq T$ eventually. Let $m_0 \in D$, s(> r') and $U \in \tilde{Q}_s(e)$ be given. Then $\exists m_1 \in E$ such that $\forall m \in E$, $m \geq m_1 \Rightarrow N(m) \geq m_0$. Also because $T \to^r e \exists m_2 \in E$ such that $\forall m \in E$, $m \geq m_2 \Rightarrow T(m) \neq U$, i. e., $S(N(m)) \neq U$. Now choose $m \in E$ such that $m \geq m_1$ and $m \geq m_2$ and let n = N(m). Then $n \geq m_0$ and $S(n) \neq U$. As s(> r'), m_0 and U were arbitrary it follows that $S \otimes^l e$ for some $l \geq r$.

Again as $T \in \Delta$ is arbitrary so $S \infty^l e \Rightarrow l \geq \bigvee_{T \in \Delta} \{r \in L; T \rightarrow^r e\}.$

Conversely, let $S \infty^l e$ in (X, τ) . We construct a subnet T of S as follows:

Let $E = \{(n,U) \in D \times \bigcup_{m>l'} \tilde{Q}_m(e); S(n) \cap U\}$. For $(n,U), (m,V) \in E$ we let $(n,U) \geq (m,V) \iff n \geq m$ in D and $U \leq V$ in $\bigcup_{m>l'} \tilde{Q}_m(e)$. It is easy to show that the binary relation ' \geq ' directs the set E. Now define $T: E \to \operatorname{Pt}(L^X)$ by T(n,U) = S(n) for $(n,U) \in E$. Then T is a fuzzy net in X and actually it

is a subnet of S, because if we define $N: E \to D$ by N(n,U) = n, we see that both the conditions of definition of a subnet are satisfied. It only remains to verify that $T \to e$ for some $r \ge l$.

For this let $G \in \tilde{Q}_m(e)$ be given where m > l' is arbitrary. Since $S \infty^l e$ so $S \not\subseteq G$ frequently. In particular fix any $n \in D$ such that $S(n) \not\subseteq G$. Then $(n, G) \in E$.

Now for any $(p, U) \in E$ with $(p, U) \ge (n, G)$, $T(p, U) \neq U$ (since T(p) = S(p))

$$\Rightarrow T(p, U) \triangleleft G(\text{since } U \subseteq G).$$

Thus $T \to^r e$ for some $r \ge l$. So, $l \le \bigvee_{T \in \Delta} \{r \in L; T \to^r e\}$.

Hence the proof of (3). The proof of (4)–(6) can be obtained similarly.

Proposition 3.9. Let (X, τ) be an L-fuzzy topological space with τ as a GO on X, $A \in L^X$. Then $\forall e \in M(L^X)$, $e \in cl(A, k' \Rightarrow \exists a \text{ fuzzy net } S \text{ in } A \text{ such that } S \rightarrow^l e \text{ for some } l \geq k$.

Proof. $e \in cl(A, k') \Rightarrow$ for every $U \in \tilde{Q}_{k'}(e)$, $U \not\in A$ (by Proposition 2.17).

As $e \in M(L^X)$ so $\tilde{Q}_{k'}(e)$ is a directed set with respect to the relation '\geq' defined by

$$U \ge V \iff U \subseteq V \text{ for } U, V \in \tilde{Q}_{k'}(e).$$

So, we define a fuzzy net $S: \tilde{Q}_{k'}(e) \to A$ by S(U) = a fuzzy point having support at where $U \neq A$ (if $U \neq A$ at many points then take any one among them as a support) and grade equal to the grade of A at this support. Then S is a fuzzy net in A and as $\forall U \in \tilde{Q}_{k'}(e)$, $U \neq A$ so $\forall U \in \tilde{Q}_{k'}(e)$ $U \neq S$ eventually, which implies $\land \{s \in L_0; \forall U \in \tilde{Q}_s(e), U \neq S \text{ eventually}\} \leq k' \Rightarrow S \to^l e \text{ for some } l \geq k$. \square

But converse of this proposition has some problem which can be shown by the following example.

Example 3.10. Let X be any nonempty set and $L = \mathcal{I} = \{(r, s) \in I \times I; r + s \leq 1\}$, the set of all instuitionistic pairs. $A \in L^X$ be defined by A(x) = (0.6, 0.4) for $x \in X$.

We define a mapping

$$\mathcal{F}: L^X \to L \text{ by } \mathcal{F}(\tilde{1}) = \mathcal{F}(\tilde{0}) = (1,0), \ \mathcal{F}(A) = (0.4,0.6),$$

$$\mathcal{F}(A') = (0.6,0.4) \text{ and } \mathcal{F}(B) = (0,1)$$

for any other $B \in L^X$. Then \mathcal{F} is a GC on X. Let $S: N \to \operatorname{Pt}(L^X)$ be a fuzzy net defined by

$$S(n) = \left(0.6 - \frac{1}{n+3}, 0.4 + \frac{1}{n+3}\right)_{\xi}$$

for some $\xi \in X$, where N is the set of all natural numbers. Now we observe that $S(n) \notin A'$ eventually, so $S \not A$ eventually and $S(n) \in A$ eventually, so $S \not A A'$ eventually. Again the fuzzy point $(0.7, 0.3)_{\xi} \not A$ as well as $(0.7, 0.3)_{\xi} \not A A'$ so

Proposition 3.11. In an L-fuzzy topological space (X, τ) , $e \notin cl(A, k') \Rightarrow$ for any fuzzy net S in A if $S \rightarrow_l e$ then $l \leq k$.

Proof. We have, by Corollary 2.15, $e \notin cl(A, k') \iff \exists$ at least one $U \in \tilde{Q}_{k'}(e)$ such that $U \not \in A$. So, for any fuzzy net S in A, $S \not \in U$ at all. This means if $S \to_l e$ then $l' \geq k'$ and hence $l \leq k$.

Corollary 3.12. If \exists a fuzzy net S in A such that $S \rightarrow_l e$ and $l > k \in L_0$ then $e \in cl(A, k')$.

Proposition 3.13. Let $f:(X,\tau)\to (Y,\delta)$ be a gp map where (X,τ) and (Y,δ) be any two L-fuzzy topological spaces, S be any fuzzy net in X. Then $S\to^k e$ in (X,τ) for some $k\in L \Rightarrow f\odot S\to^l f(e)$ in (Y,δ) for some $l\geq k$.

Proof. Let $\tilde{Q}_r(e)$ and $\tilde{Q}_r''(f(e))$ be the **q**-nbd systems of e and f(e) with respect to the Chang fuzzy topology τ_r and δ_r respectively.

As f is a gp-map so $V \in \tilde{Q}''_r(f(e)) \Rightarrow f^{-1}(V) \in \tilde{Q}_r(e) \forall r \in L_0$.

Again if $S
q f^{-1}(V)$ eventually then f(S)
q V eventually. From these two facts we can conclude that if $\forall U \in \tilde{Q}_r(e)$, U
q S eventually then $\forall V \in \tilde{Q}_r''(f(e))$, V
q f(S) eventually, $i. e., S \rightarrow^k e \Rightarrow f \odot S \rightarrow^l f(e)$ for some $l \geq k$.

Proposition 3.14. Let $f:(X,\tau)\to (Y,\delta)$ be a mapping where (X,τ) and (Y,δ) be any two L-fuzzy topological spaces. If for any L-fuzzy net $S, S\to^k e \Rightarrow f\odot S\to_l f(e)$ for some $l\geq k$ and for $e\in M(L^X)$ then f is a gp-map.

Proof. If possible let f be not a gp-map, then $\exists V \in L^Y$ such that

$$\tau(f^{-1}(V)) \not\geq \delta(V).$$

Then from the order dense property of L we can get $k_1, k_2 \in L$ such that

$$\tau(f^{-1}(V)) \not\geq k_1 < k_2 < \delta(V).$$

Now $\tau(f^{-1}(V)) \not\geq k_1 \Rightarrow \wedge_e q_{f^{-1}(V)} Q(e, f^{-1}(V)) \not\geq k_1, e \in M(L^X)$

- $\Rightarrow \exists e^0 \in M(L^X) \text{ such that } e^0 \neq f^{-1}(V) \text{ and } Q(e^0, f^{-1}(V)) \not\geq k_1$
- $\Rightarrow \forall \{\tau(U); e^0 \neq U \subset f^{-1}(V)\} \not\geq k_1$
- $\Rightarrow \forall U \in L^X \text{ with } \tau(U) \geq k_1 \text{ and } e^0 \mathsf{Q} U, \ U \not\subseteq f^{-1}(V).$

If we take $\mathcal{D} = \tilde{Q}_{k_1}(e^0)$ then as $e^0 \in M(L^X)$ so \mathcal{D} is a directed set with respect to the binary relation ' \subseteq ' and $\forall U \in \mathcal{D}, U \not\subseteq f^{-1}(V), i. e., U \operatorname{q}\{f^{-1}(V)\}$ '.

Let us now define a fuzzy net $S: \mathcal{D} \to \operatorname{Pt}(L^X)$ by the following rule: $S(U) = \operatorname{the} L$ -fuzzy point having the support at where $U\operatorname{Q}\{f^{-1}(V)\}'$ (if more than one such support exist then take any one of them) and grade equal to the grade of $\{f^{-1}(V)\}'$ at this support. Then

$$S(U) \in \{f^{-1}(V)\}' \ \forall U \in \mathcal{D}, i. \ e., S(U) \not A f^{-1}(V) \ \forall U \in \mathcal{D} \Rightarrow f(S(U)) \not A V \ \forall U \in \mathcal{D}.$$

Also $e^0 \not\in f^{-1}(V) \Rightarrow f(e^0) \not\in V$ where $\delta(V) > k_2$. Therefore, $\delta(V) > k_2$ and $f(e^0) \not\in V$ but $f(S(U)) \not\in V$ for $U \in \mathcal{D}$ imply that if $f \odot S \to_l f(e^0)$ then $l' > k_2$. But from the construction of S, if $U \in \tilde{Q}_{k_1}(e^0)$ then $\forall V \geq U, S(V) \not\in U$ (since $V \geq U$ means $V \subseteq U$ and from the construction of S we have $S(V) \not\in V \not\in \mathcal{D}$ so $S(V) \not\in U$, $S \not\in U$ eventually.

Hence if
$$S \to^k e^0$$
 then $k' \le k_1$.
So, $k' \le k_1 < k_2 < l' \implies k' < l' \implies k > l$.

ACKNOWLEDGEMENT

The authors are grateful to the learned referee for his valuable comments.

References

- C. L. Chang: Fuzzy topological spaces. J. Math. Anal. Appl. 24 (1968), 182–190. MR 38#5153
- 2. K. C. Chattopadhyay, R. N. Hazra & S. K. Samanta: Gradation of openness: fuzzy topology. Fuzzy Sets and Systems 49 (1992), no. 2, 237–242. MR 93f:54004
- K. C. Chattopadhyay & S. K. Samanta: Fuzzy topology: fuzzy closure operator, fuzzy compactness and fuzzy connectedness. Fuzzy Sets and Systems 54 (1993), no. 2, 207–212. MR 93k:54016
- 4. M. Demirci: Neighborhood structures of smooth topological spaces. Fuzzy Sets and Systems 92 (1997), no. 1, 123–128. CMP1481022
- 5. U. Höhle: Upper semicontinuous fuzzy sets and applications. J. Math. Anal. Appl. 78 (1980), no. 2, 659-673. MR 82d:54005

- P. Pu & Y. M. Liu: Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence. J. Math. Anal. Appl. 76 (1980), no. 2, 571–599. MR 82e:54009a
- 7. K. K. Mondal & S. K. Samanta: A study on intuitionistic fuzzy topological spaces. Notes IFS 9 (2003), no. 1, 1–32. CMP2018445
- 8. T. K. Mondal & S. K. Samanta: On intuitionistic gradation of openness. Fuzzy Sets and Systems 131 (2002), no. 3, 323-336. MR 2003j:03072
- 9. A. A. Ramadan, S. N. El-Deeb & M. A. Abdel-Sattar: On smooth topological spaces. IV. Fuzzy Sets and Systems 119 (2001), no. 3, 473–482. CMP1815455
- 10. A. A. Ramadan: Smooth topological spaces. Fuzzy Sets and Systems 48 (1992), no. 3, 371–375. MR 93e:54006
- 11. A. P. Sostak: On a fuzzy topological structure. Rend. Circ. Mat. Palermo (2) Suppl. 11 (1985), 89–103. MR 88h:54015
- 12. M. S. Ying: On the method of neighborhood systems in fuzzy topology. Fuzzy Sets and Systems 68 (1994), no. 2, 227-238. MR 95k:54012
- 13. Y. Liu & M. Luo: Fuzzy topology. Advances in Fuzzy Systems—Applications and Theory, 9. World Scientific Publishing Co., Inc., River Edge, NJ, 1997. MR 99m:54005
- B. Y. Lee, J. H. Park & B. H. Park: Fuzzy convergence structures. Fuzzy Sets and Systems 56 (1993), no. 3, 309-315. MR 94b:54019
- 15. L. A. Zadeh: The concept of a linguistic variable and its application to approximate reasoning. I. *Information Sci.* 8 (1975), 199–249. MR 52#7225a
- (K. K. Mondal) Department of Mathematics, Kurseong College, Kurseong-734203, West Bengal, India
- (S. K. Samanta) Department of Mathematics, Visva Bharati, Santiniketan-731235, West Bengal, India

Email address: syamal_123@yahoo.co.in