초록
본 연구에서는 얼랑(Erlang)분포의 규모모수에 대 한 축차확률비검정(SPRT)과 관련된 적분방정식의 정학한 해를 구하는 법을 살펴보기로 한다. 축차확률비검정에서 그 평균 표본 개수, 그리고 1종 오류 확률과 2종 오류 확률은 프레돔 형태의 적분 방정식으로 나타나게 된다. 이러한 적분 방정식은 보통 가우시안 쿼드러쳐(qudrature)를 이용하여 근사적으로 그 해를 구하는 것이 일반적이다. 얼랑분포의 경우 이러한 적분방정식의 해가 정확하게 구할 수 있음이 알려져 있다. 본 연구에서는 얼랑분포에서 그 해를 구하는 구체적 방법을 살펴보기로 한다.
In this paper, we propose a method to evaluate the solutions of the renewal equations related to SPRT for Erlang distribution. In SPRT, the Average Sample Number(ASN) and type I or type II error probabilities are shown in Fredholm type integral equations. The integral equations are generally solved by the approximation method using Gaussian quadrature. For Erlang distribution, it has been known that the exact solutions of the equations exist. We propose the algorithm to solve the equations.