Abstract
In this study, a microchip system fabricated with MEMS technology was developed to detect bioelectrical signals. The developed microchip using the conductivity of gold nanoparticles could detect the biopotential with a high sensitivity. For designing the microchip, simulations were performed to understand the effects of the size and number of nanoparticles, and the sensing width between electrodes on the detection of biosignals. Then, a series of experiment was performed to validate the simulation results and understand the feasibility of the proposed microchip design. Both simulation and experimental results showed that as the sensing width between electrodes increased the conductivity decreased. Also, the conductivity increased as the density of gold nanoparticles increased. In addition, it was found that the conductivity that changes with the nanoparticles density could be approximated by a cumulative normal distribution function. The developed microchip system could effectively apply when a biosignals should be measured with a high sensitivity.