DOI QR코드

DOI QR Code

State-of-the Art Review in Nano-Biomanipulation Technologies

나노-바이오 매니퓰레이션 기술의 현황 및 전망

  • 김덕호 (한국과학기술연구원 마이크로시스템연구센터) ;
  • 김병규 (한국과학기술연구원 마이크로시스템연구센터) ;
  • 박종오 (전남대학교 기계시스템공학부) ;
  • 주병권 (고려대학교 전기공학과)
  • Published : 2005.04.01

Abstract

This article describes a state-of-the art review in nano-biomanipulation technologies. Nanomanipulation of biological objects enables an in-depth study of single molecules such as DNA and RNA, and of biophysical events at the molecular level like molecular motors. Controlled nanomanipulation is challenging but essential for precisely engineering biomolecules or cells and for manufacturing functional nano-biosystems. In this paper, we summarize several contact, non-contact and hybrid methods available for nanomanipulation of biological objects. Advantages currently available methods and their limitations are also compared. Finally, we discuss possible applications of nano-biomanipulation technologies to life science and molecular medicine including cell biology, genetic engineering, biophysics, and biochemistry.

Keywords

References

  1. Cornell Nanobiotechnology Center, http://www.nbtc.cornell.edu/
  2. R. K. Soong et al., 'Powering an inorganic nanodevice with a biomolecular motor,' Science, vol. 290, pp. 1555-1558, 2000 https://doi.org/10.1126/science.290.5496.1555
  3. H. Hansma, 'Reproducible imaging and dissection of plasmid DNA under liquid using atomic force microscope,' Science, vol. 256, pp. 1180-1184, 1992 https://doi.org/10.1126/science.256.5060.1180
  4. J. Yuqui et al., 'Mechanical, electrical, and chemical manipulation of single DNA molecules,' Nanotechnology, vol. 3, pp. 16-20, 1992 https://doi.org/10.1088/0957-4484/3/1/004
  5. M. Washizu, and O. Kurosawa, 'Electrostatic manipulation of DNA in microfabricated structures,' IEEE Trans. Ind. Appl., vol. 26, pp. 1165-1172, 1990 https://doi.org/10.1109/28.62403
  6. D. R. Baselt, G. U. Lee, and R. J. Colton, 'Biosensor based on force microscope technology,' Journal of Vacuum Science and Technology B, vol. 14, no. 2, pp. 789-793, 1996 https://doi.org/10.1116/1.588714
  7. J. Liphardt et al., 'Reversible unfolding of single RNA molecules by mechanical force,' Science, vol. 292, pp. 733-737, 2001 https://doi.org/10.1126/science.1058498
  8. Ikai, A. ldiris, H. Sekiguchi, H. Arakawa, and S. Nishida, 'Intra-and intermolecular mechanics of proteins and polypeptides studied by AFM: with applications,' Applied Surface Science, vol. 188, pp.1-7, 2002 https://doi.org/10.1016/S0169-4332(01)00962-X
  9. K. Mitsui, K. Nakajima, H. Arakawa, M. Hara, and A. Ikai, 'Dynamic measurement of single protein's mechanical properties,' Biochemical and Biophysical Research Communications, vol. 272, pp. 55-63, 2000 https://doi.org/10.1006/bbrc.2000.2742
  10. M. Guthold, G. Matthews, A. Negishi, R. M. Taylor, D. Erie, F.P. Brooks, and R. Superfine, 'Quantitative manipulation of DNA and viruses with the nanomanipulator scanning force microscope,' Surface Interface Analysis, vol. 27, pp. 437-443, 1999 https://doi.org/10.1002/(SICI)1096-9918(199905/06)27:5/6<437::AID-SIA505>3.0.CO;2-N
  11. M. R. Falvo, S. Washburn, R. Superfine, M. Finch, F.P. Brooks, V. Chi, and R.M. Taylor, 'Manipulation of individual viruses: friction and mechanical properties,' Biophysical Journal, vol. 72, pp. 1396-1403, 1997a https://doi.org/10.1016/S0006-3495(97)78786-1
  12. The tiny toolkit, Nature, vol. 423, pp. 10-12, 2003 https://doi.org/10.1038/423010a
  13. J. Lundqvist et al., 'Altering the biochemical state of individual cultured cells and organelles with ultramicroelectrodes,' Proc. Nat. Acad. Sci., vol. 95, pp. 10356-10360, 1998 https://doi.org/10.1073/pnas.95.18.10356
  14. U. Zimmermann et al., 'Electromanipulation of Mammalian Cells: Fundamentals and Application,' IEEE Trans. Plasma Science, vol. 28, no. 1, 2000 https://doi.org/10.1109/27.842868
  15. M. Sitti, 'Survey of nanomanipulation systems,' Proc. of the IEEE Conf. Nanotechnology, pp. 75-80, 2001 https://doi.org/10.1109/NANO.2001.966397
  16. G. Bao, 'Mechanics of biomolecules,' Journal of Mechanics and Physics of Solids, vol. 50, pp. 2237-2274, 2002 https://doi.org/10.1016/S0022-5096(02)00035-2
  17. P. Kim and C. M. Lieber, 'Nanotube nanotweezers,' Science, vol. 286, pp. 2148-2150, 1999 https://doi.org/10.1126/science.286.5447.2148
  18. K. T. Brown and D. G. Flaming, 'Advanced micropipette techniques for cell physiology,' in IBRO Handbook: Methods in Neurosciences, Chichester, Ed. New York: Wiley, 1992
  19. J. A. Stroscio and D. M. Eigler, 'Atomic and molecular manipulation with the scanning tunneling microscope,' Science, vol. 254, pp. 1319-1326, 1991 https://doi.org/10.1126/science.254.5036.1319
  20. Ashikin, J. M. Dziedzic, and T. Yamane, 'Optical trapping and manipulation of single cells using infrared laser beams,' Nature, vol.330, pp. 769-771, 1987 https://doi.org/10.1038/330769a0
  21. M. S. Lavine, 'Biofunctional Magnetic Tweezers,' Science, vol. 292, pp. 171, 2001 https://doi.org/10.1126/science.292.5515.171e
  22. G. V. Shivashankar and A. Libchaber, 'Single DNA molecule grafting and manipulation using a combined atomic force microscope and an optical tweezer,' Appl. Phys. Lett., vol. 71, no. 25, pp. 3727-3729, 1997 https://doi.org/10.1063/1.120495
  23. P. Hillner et al., 'Combined atomic force and confocal laser scanning microscope,' JMSA, vol. 1, pp. 127-130, 1995
  24. M.J. Lang, P. M. Fordyce, and S. M. Block, 'Combined optical trapping and single-molecule fluorescence,' Journal of Biology, vol. 2, no. 6, 2003 https://doi.org/10.1186/1475-4924-2-6
  25. C. Keller and R. T. Howe, 'Nickel-filled hexsil thermally actuated tweezers,' in Digest: Int. Conf. on Solid State Sensors and Actuators. Stockholm, Sweden: Transducers Research Foundation, 1995
  26. G. M. Whitesides and B. Grzybowski, 'Self-assembly at all scales,' Science, vol. 29 pp. 2418-2421, 2002 https://doi.org/10.1126/science.1070821
  27. T. Schnelle, R. Hagedorn, G. Fuhr, S. Fiedler, and T. Muller, '3-Dimensional electric-field traps for manipulation of cells-calculation and experimental verification,' Biochim. Biophys. Acta, vol. 1157, pp. 127-140, 1993 https://doi.org/10.1016/0304-4165(93)90056-E
  28. S. Miltenyi, W. Muller, W. Weichel, and A. Radbruch, 'High gradient magnetic cell separation with MACS,' Cytometry, vol. 11, pp. 231-238, 1990 https://doi.org/10.1002/cyto.990110203
  29. W. T. Coackley, TIBTECH, vol. 5, pp. 506-511, 1997
  30. J. C. Giddings, Science, vol. 260, pp. 1456-1464, 1993 https://doi.org/10.1126/science.8502990
  31. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, 'A microfabricated fluorescence activated cell sorter,' Nature Biotech., vol. 17, pp. 1109-1111, 1999 https://doi.org/10.1038/15095
  32. M. B. Cohn, 'Self-assembly of microfabricated devices,' U.S. Patent 5,355,577, 1992
  33. Binnig, G., Quate, C. F. and Gerber, C., 1986, 'Atomic Force Microscope,' Phys. Rev. Lett., Vol. 56, pp.930-933 https://doi.org/10.1103/PhysRevLett.56.930
  34. B. Drake et al., 'Imaging crystals, polymers and processes in water using AFM,' Science, vol. 243, pp. 1586-1589, 1989 https://doi.org/10.1126/science.2928794
  35. P.K. Hansma et al., 'Tapping mode atomic force microscopy in liquids,' Appl. Phys. Lett., vol 64, pp. 1738-1740, 1994 https://doi.org/10.1063/1.111795
  36. W. Han, S. Lindsay, and T. Jing, 'A magnetically driven oscillating probe microscope for operation in liquids,' Appl. Phys. Lett., vol. 69, pp. 4111-4113, 1996 https://doi.org/10.1063/1.117835
  37. E. Henderson, 'Imaging and nanodissection of individual supercoiled plasmids by AFM,' Nucleic Acids Res., vol. 20, pp. 445-447, 1992 https://doi.org/10.1093/nar/20.3.445
  38. R. Stark et al., 'The AFM as a tool for chromosomal dissection,' Appl. Phys. A, vol. 66, pp. 579-584, 1998 https://doi.org/10.1007/s003390051205
  39. S. Thalhammer et al., 'The Atomic Force Microscope as a new microdissecting tool for the generation of genetic probes,' Journal of Structural Biology, vol. 119, pp. 232-237, 1997 https://doi.org/10.1006/jsbi.1997.3869
  40. H. Telenius et al., 'Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow sorted chromosomes,' Genes-Chromosomes-Cancer, vol.4, no. 3, pp. 257-263, 1992 https://doi.org/10.1002/gcc.2870040311
  41. H. Ludecke, G. Senger, U. Claussen, and B. Horsthemke, 'Cloning defined regions of the hUl11an genome by microdissection of banded chromosomes and enzymatic amplification,' Nature, vol. 338, pp. 348-350 https://doi.org/10.1038/338348a0
  42. M. R. Falvo, G. J. Clary, R. M. Taylor, V. Chi, F. P. Brooks, S. Washburn, and R. Superfine, 'Bending and buckling of carbon nanotubes under large strain,' Nature, vol. 389, pp. 582-584, 1997b https://doi.org/10.1038/39282
  43. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton, Sinauer Associates, Sunderland, MA. 2001
  44. D. Fotiadis et al., 'Imaging and manipulation of biological structures with the AFM,' Micron, vol. 33, pp. 385-397, 2002 https://doi.org/10.1016/S0968-4328(01)00026-9
  45. C. Bustamante, S. Smith, J. Liphardt, and D. Smith, 'Single molecule studies of DNA mechanics,' Journal of Structural Biology, vol. 10, pp. 279-285, 2000
  46. H. Kojima, A. Ishijima, and T. Yanagida, 'Direct mesasurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation,' Proc. Natl. Acad. Sci., vol. 96, no. 21, pp. 12962-12966, 1994 https://doi.org/10.1073/pnas.91.26.12962
  47. S. Hodges, 'Measuring forces with the AFM: polymeric surfaces in liquids,' Advances in Colloid and Interface Science, vol. 90, pp. 13-75, 2002 https://doi.org/10.1016/S0001-8686(02)00003-9
  48. Ashkin et al., 'Observation of single-beam gradient force optical trap for dielectric particles,' Opt. Lett., vol. 11, pp. 288-290, 1986 https://doi.org/10.1364/OL.11.000288
  49. Ashkin, 'Forces of a single beam gradient laser trap on a dielectric sphere in the ray-optics regime,' Biophysics J., vol. 61, pp. 569-582, 1992 https://doi.org/10.1016/S0006-3495(92)81860-X
  50. W. Denk and W. Webb, 'Optical measurements of picometer displacements of transparent microscopic objects,' Appl. Optics, vol. 29, pp. 2382-2391, 1990 https://doi.org/10.1364/AO.29.002382
  51. M. Bennink et al., 'Singlemolecule manipulation of double-stranded DNA using optical tweezers,' Cytometry, vol. 36, pp. 200-208, 1999 https://doi.org/10.1002/(SICI)1097-0320(19990701)36:3<200::AID-CYTO9>3.0.CO;2-T
  52. Mizuno, M. Nishioka, and R.Ishii, 'Optoelectrostatic micromanipulation of single cell and DNA molecule,' 6th Intl. Symp. on Micromachines, pp. 153-159, 1995 https://doi.org/10.1109/MHS.1995.494232
  53. G. Wuite, R. Davenport, A. Rappaport, and C. Bustamante, 'An integrated laser trap flow control video microscope for the study of single biomolecules,' Biophysical Journal, vol. 79, pp. 1155-1167, 2000 https://doi.org/10.1016/S0006-3495(00)76369-7
  54. T. Funatsu, Y. Harada, H. Higuchi, and et al., 'Imaging and nano-manipulation of single biomolecules,' Biophysical Chemistry, vol. 68, pp. 63-72, 1997 https://doi.org/10.1016/S0301-4622(97)00008-2
  55. K. Svoboda, C. Schmidt, B. Schnapp, and S. Block, 'Direct observation of kinesin stepping by optical trapping interferometry,' Nature, vol.365, pp. 721-727, 1993 https://doi.org/10.1038/365721a0
  56. J. Finer, R. Simmons, and J. Spudich, 'Single Mysoin Molecular Mechanics: Piconewtons Forces and Nanometer Steps,' Nature, vol.368, pp. 113-119, 1994 https://doi.org/10.1038/368113a0
  57. H. A. Pohl, 'Dielectrophoresis,' Cambridge Univ. Press, 1978
  58. G. Asbury and G. van den Engh, 'Trapping of DNA in non-uniform oscillating electric fields,' Biophysical Journal, vol. 74, pp. 1024-1030, 1998 https://doi.org/10.1016/S0006-3495(98)74027-5
  59. D. Bakewell, M. Hughes, J. Milner, and H. Morgan, 'Dielectrophoretic manipulation of Avidin and DNA,' Proc of the IEEE Conf. Eng. in Medicine and Biology, vol. 20, no. 2, pp. 1079-1082, 1998 https://doi.org/10.1109/IEMBS.1998.745640
  60. S. Archer et al., 'Cell reactions to dielectrophoretic manipulation,' Biochem. Biophys. Res. Comm., vol. 257, pp. 687-698, 1999 https://doi.org/10.1006/bbrc.1999.0445
  61. K. Hirano et al., 'Application of local temperature control for DNA micromanipulation,' 6th Intl. Symp. Micromachines, pp. 177-182, 1996 https://doi.org/10.1109/MHS.1996.563420
  62. S. Katsura et al., 'Handling of single DNA molecules by controlling the temperature,' IEEE Trans. Ind. Appl, pp. 1927-1931, 1996 https://doi.org/10.1109/IAS.1996.563830
  63. K. Hamad-Schifferli, J. J. Schwartz, A. T. Santos, S. Zhang, and J. M. Jacobson, 'Remote electronic control of DNA hydridization through inductive coupling to an attached metal nanocrystal antenna,' Nature, vol. 415, pp. 152-155, 2002 https://doi.org/10.1038/415152a
  64. L.S. Lerman, Proc. Natl. Acad. Sci., vol. 68, pp. 1886-1890, 1971 https://doi.org/10.1073/pnas.68.8.1886
  65. S. Katsura et al., 'Manipulation of globular DNA molecules for sizing and separation,' Electrophoresis, vol. 21, pp. 171-175, 2000 https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<171::AID-ELPS171>3.0.CO;2-U
  66. K.Hirano et al., 'Manipulation of single DNA molecules in globular state,' IEEE Symposium on Micromechatronics, pp. 205-211, 1998 https://doi.org/10.1109/MHS.1998.745783
  67. K. Morishima, T. Fukuda, F. Arai, and K. Yoshikawa, 'Manipulation of DNA molecules utilizing the conformational transition in the higher order structure of DNA,' Proc. of the IEEE Conf. Robotics and Automation, pp.1454-1459, 1997 https://doi.org/10.1109/ROBOT.1997.614343
  68. Kurosawa, K. Okabe, and M. Washizu, 'DNA analysis based on physical manipulation,' IEEE Trans. Industry Applications, pp. 311-316, 2000 https://doi.org/10.1109/MEMSYS.2000.838535
  69. T. Yamamoto and O. Kurosawa, 'Molecular surgery of DNA based on electrostatic micromanipulation,' IEEE Trans. on Industry Appl., vol.36, no. 4, pp. 1010-1017, 2000 https://doi.org/10.1109/28.855954
  70. D. Bensimon, A. J. Simon, V. Croquette, and A. Bensimon, 'Stretching DNA with a receding meniscus: experiments and models,' Physical Review Letters, vol. 74, pp. 4754-4757, 1995 https://doi.org/10.1103/PhysRevLett.74.4754
  71. Mehta et al., 'Single-molecule biomechanics with optical methods,' Science, vol. 283, pp. 1689-1695, 1999 https://doi.org/10.1126/science.283.5408.1689
  72. Y. Ishii, A. Ishijima, and T. Yanagida, 'Single molecule nanomanipulation of biomolecules,' Trends in Biotechnology, vol. 19, no. 6, 2001 https://doi.org/10.1016/S0167-7799(01)01635-3