DOI QR코드

DOI QR Code

Implementation and Control of Crack Tracking Robot Using Force Control : Crack Detection by Laser and Camera Sensor Using Neural Network

힘제어 기반의 틈새 추종 로봇의 제작 및 제어에 관한 연구 : Part Ⅰ. 신경회로망을 이용한 레이저와 카메라에 의한 틈새 검출 및 로봇 제작

  • 조현택 (충남대학교 메카트로닉스공학과) ;
  • 정슬 (충남대학교 메카트로닉스공학과)
  • Published : 2005.04.01

Abstract

This paper presents the implementation of a crack tracking mobile robot. The crack tracking robot is built for tracking cracks on the pavement. To track cracks, crack must be detected by laser and camera sensors. Laser sensor projects laser on the pavement to detect the discontinuity on the surface and the camera captures the image to find the crack position. Then the robot is commanded to follow the crack. To detect crack position correctly, neural network is used to minimize the positional errors of the captured crack position obtained by transformation from 2 dimensional images to 3 dimensional images.

Keywords

References

  1. T. A. Lasky and B. Ravani, 'Sensor-based path planning and motion control for a robotic system for roadway crack sealing', IEEE Transactions on Control Systems Technology, vol. 8, no. 4, pp. 609-622, July 2000 https://doi.org/10.1109/87.852907
  2. Y. B. Jeon, B. O. Kam, S. S. Park, and S. B. Kim, 'Seam tracking and welding speed control of mobile robot for lattice type Welding', Proceedings. ISIE 2001. IEEE International Symposium on, vol 2, pp. 857-862, June 2001 https://doi.org/10.1109/ISIE.2001.931580
  3. R. S. Petty, M. Robinson and J. P. O. Evans, '3D measurement using rotating line-scan sensors', Meas. Sci. Technol. vol, 9, pp. 339-346, 1998 https://doi.org/10.1088/0957-0233/9/3/005
  4. Y.-H. Fa and Y. Moalem, 'Effective defect detection and classification methodology based on integrated laser scanning inspection and automatic defect classification', IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 266-271, 1998 https://doi.org/10.1109/ASMC.1998.731570
  5. X. Xu, C. S. Xu, Y. L. Tian, S. D. Ma and M. L.- Luo, '3-D face image acquisition and reconstruction system', Technology Conference 1998 https://doi.org/10.1109/IMTC.1998.676898
  6. W. T. Woo and A. Ortega, 'Modified overlapped block disparity compensation for stereo image coding', SPIE vol. 3635, pp. 570-581, 1999 https://doi.org/10.1117/12.334707
  7. W. Czajewski and A. Sluzek, 'Development of a laser based vision system for an underwater vehicle', ISIE'99-Bled, Slovenia, pp. 173-177, 1999 https://doi.org/10.1109/ISIE.1999.801779
  8. D. S. Yang, J. H. Chen H. Zhou and S. Bukley, 'Two practical ways to avoid spurious reflections from shiny surfaces on a 3D machine vision inspection system', SPIE vol. 3652, pp. 30-33, January 1999 https://doi.org/10.1117/12.341150
  9. S. Tetlow and J. Spours, 'Three-dimensional measurement of underwater work sites using structured laser light', Meas. Sci. Technol. vol. 10, pp. 1162-1167, 1999 https://doi.org/10.1088/0957-0233/10/12/307
  10. R. Fierro, and F. L. Lewis, 'Control of a nonholonomic mobile robot using neural networks', Proceedings of the IEEE International Symposium on Intelligent Control, pp. 415-421, Aug. 1995
  11. T.-C. Lee, K.-T. Song, C.-H. Lee, and C.-C Teng, 'Tracking control of mobile robots using saturation feedback controller,' IEEE International Conference on Robotics and Automation, pp. 2639-2644, May 1999 https://doi.org/10.1109/ROBOT.1999.773996
  12. W. Weiguo, C. Huitang, and W. Yuejuan, 'Backstepping design for path tracking of mobile robots', IEEE/RSJ International Conference on Intelligent Robots and Systems, Volume 3, pp. 1822-1827, Oct. 1999 https://doi.org/10.1109/IROS.1999.811743
  13. J. Weng, P. Cohen, and M. Herniou, 'Calibration of stereo cameras using a non-linear distortion model', IEEE Conference on Pattern Recognition, pp. 246-253 https://doi.org/10.1109/ICPR.1990.118105
  14. J. Weng, P. Cohen, and M. Herniou, 'Camera calibration with distortion models and accuracy evaluation', IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 14, no. 10, pp. 965-980 https://doi.org/10.1109/34.159901