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Design of an Adaptive Filter with a Dynamic Structure
for ECG Signal Processing

Ju-Won Lee and Gun-Ki Lee

Abstract: Biomedical signals such as ECG, EMG, and EEG are extremely important in the
diagnosis of patients. It is difficult to filter noise from these signals, and errors resulting from
filtering can distort a biomedical signal. Existing systems have shown poor performance when
complicated noise appears. Adaptive filtering is selected to contend with these defects. Existing
adaptive filters can adjust the filter coefficient with the given filter order, but they can produce
an unsuitable order in different environments. In order to solve this problem, an optimal
adaptive filter with a dynamic structure was designed. Positive experimental results were

obtained.
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1. INTRODUCTION

The most vital informative signals used to diagnose
patients are the electrocardiogram (ECG), which is
generated from heart activity; the electromyogram
(EMG), which is generated from electrical activity in
the muscles; and the electroencephalogram (EEG),
which is generated from the brain. The ECG signal,
measured with an electrocardiograph, is a biomedical
electrical signal occurring on the surface of the body
due to the contraction and relaxation of the heart. This
signal represents an extremely important measure for
doctors, as it provides vital information about a
patient’s cardiac condition and general health [1,2].
Generally, the frequency band of the ECG signal is
0.05 to 100Hz, and the ECG signal includes 60Hz
power line noise, baseline wander due to respiration,
and muscle artifacts resulting from the movement of
electrodes during measurement. 60Hz power line
noise can affect the Q- and P-waves of the ECG signal,
generating errors during the diagnosis of arrhythmia
or myocardial infarction. Power line noise can cause
errors by distorting the ECG signal during the
measurement of the QRS complex interval or the QT
interval, which are important parameters in diagnosis.
In order to remove 60Hz power line noise, an LMS
adaptive filter can be applied by setting the notch
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filter of the 60Hz band or the 60Hz-component as a
reference signal, so as to adjust the filter coefficient
until the error is minimized from the input signal
where the 60Hz-component is included [3-6]. The
baseline wander—the low-frequency noise (below
1Hz) resulting from respiration—has the same
frequency band as the ST segment of the ECG signal.
It is used as a diagnostic parameter for myocardial
infarction. The effective removal of the baseline
wander is recommended in order to measure the ST
segment with precision. Since muscle artifacts are
distributed in a wide frequency band, they can
generate distortions in the ECG signal when noises are
removed. As it includes diverse noises as well as
changes in time, analysis is difficult. Since this noise
can be affected by the patient’s physical condition and
the environment, signal processing should be adapted
to the environment. The noise can be the temperature
variance of the electric system, static electricity, the
patient’s potential variance, the patient’s movement,
power line noise (60Hz), high-frequency noise, and so
on. Among these factors, the patient’s movement can
result in the poor performance of the ECG instrument.
These biomedical signals vary in time and are non-
linear, so the least mean square (LMS) adaptive filter
is mainly used. The LMS adaptive filter, however,
removes noise or obtains the desired signal features by
adapting the filter coefficients according to a given
filter order; as a result, from time to time, the output
error of the filter cannot be minimized in a noisy
environment. The filter order should be adapted, as
noise mixing depends on the environment. In addition,
excessive filter ordering can cause distortions of the
biomedical signal [2,6]. A new LMS adaptive filter
algorithm was proposed to adapt the filter order and
the filter coefficients simultaneously, thus improving
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the performance of existing LMS adaptive filters in
processing biomedical signals. The new filter was
applied to ECG signal processing to verify its
performance.

2. LMS ADAPTIVE FILTER

The general LMS adaptive filter removes noise or
obtains a desired signal by adapting the filter
coefficient with the least-mean-square algorithm
based on a given filter order [7,8]. The output of the
LMS adaptive filter can be expressed as

S’(n)zS n)+N(n)—]\7(n), 9]

N(n)=> WNg(n-i), 2)
i=0

Wi(n+1)=W(n) + 2uSmNp(n—i), (3

where i:0,1,2,...,L, u: convergence constant, L :
filter order, S(n): original ECG signal, N(»): noise
signal, S(n)=E(n): filtered ECG signal, N(n): the
estimated noise signal, W;(n): the filter coefficient,

and Np(n): the reference noise signal. The LMS

adaptive filter adapts the filter coefficients in order to
obtain the desired signal, thus converging the filter
output error to minimize it. However, the desired
solution range may not be reached during the
convergence; instead, a local minimum may be
reached, allowing no further convergence. In addition,
the filter output error may not be further minimized if
no proper filter order is set, resulting in poor
performance. In order to solve these problems, we
should increase the filter order with the trial error
method or adjust the convergence constant and
readapt it.

3. PROPOSED LMS ADAPTIVE FILTER
WITH DYNAMIC STRUCTURE

In this study, a method of varying filter order to
solve problems related to LMS adaptive filter
performance and convergence was suggested. In the

first step of the convergence, error drastically decreases.

However, since the adaptation count increases, the error
slowly decreases, as in a typical logarithmic function.
Based on this characteristic, we adapted the filter order.
Its structure is shown in Fig. 1. When the adaptation
limit is reached, the convergence is

E(p)=2.S(nY, )

AE=E(p)-E(p-D—-E(p-2)+E(p-3)I~0,(5)

ECG(n)= S(n)+ N(n) ()

Adaptive algorithm

Z“‘ Adaptive filter order

Fig. 1. LMS adaptive filter with dynamic structure.

where p is the period of the ECG signal and AE is

the difference between the error in the previous
convergence and that in the current convergence.

If AE=0, instead of accessing to the desired
signal, the performance of the LMS adaptive filter is
not improved. If the coefficient of the LMS adaptive
filter constantly and minutely changes, convergence is
in progress. Therefore, the convergence of the LMS
adaptive filter can be understood from the different
Dy (p) of filter coefficients and the change of the

filter coefficients, as shown in (6).

Dy (p)= z AR AR

where L is the order of the current filter and

W,(n) and W, (n) are the current filter

coefficients and the filter coefficients of one ECG
signal period before, respectively. If the change of the
filter coefficient is large, the filter order can be
converged to a small order. If small, it cannot be
converged to a small order, so the filter order should
be largely increased. However, if the LMS adaptive
filter produces satisfactory filter output, the change of
the filter output error and the change of the filter
coefficient access is 0. It should be determined
whether the noise is included in the current filter
output signal. Therefore, we obtained the relationship
between the noise and the filter output, as shown in

®.

P P
G(p)= 2 |S(m)|/ 2| S(n)+ N(n)l, Q)

n=0 n=0
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(a) The output of DSAF for MIT-BIH ECG signal 101 with noises.
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(b) The output of DSAF for MIT-BIH ECG signal 105 with noises.
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(c) The output of DSAF for MIT-BIH ECG signal 202 with noises.

Fig. 2. Outputs of the proposed DSAF for ECG signals of MIT-BIH’s 101, 105 and 202; S(n): original ECG

signal, S(n)+ N(n): ECG signal with noises, S'(n): Filtered ECG signal, Dy, (p): different of filter
coefficients for p period, G(p): estimated noise gain, R(p): cross-correlation for S(n)+ N(n) and

the estimate noise N (n),and L: filter order change of DSAF.
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R(p)= max( S(p,kNG(PIN(pk + l)}} ®

P—k-1
0
where G(p): the noise gain for a p period and

R(p): the maximum value of cross-correlation. We

decided to adjust the filter order under the following
conditions:

l,f{ Dy (p)< . R(p)=Rp }

{R(P)—R(p-1)}>0,{R(p-2)-R(p-3)} >0

then{L:LJrl}, ©)
L=L-1

where [ and R, are the threshold value and are

the sensitivity to adjust the order of the adaptive filter.
(9) is to decrease the filter order because the filter
order is bigger as the correlation value to the noise
increases (the filter output signal is distorted by the
current filter order). In other words, the algorithm
(DSAF: dynamic structure adaptive filter) of the LMS
adaptive filter with the dynamic structure, suggested
collectively, allows the filter order and the filter
coefficient to be adapted to the measurement
environment.

4. EXPERIMENT AND RESULTS

To verify the algorithm suggested in this paper, we
filtered the ECG signals and evaluated the overall
error of the signal and the optimal filter order. In this
experiment, we used MATLAB to estimate the
performance of the proposed dynamic rescue filter,
and we experimented with two kinds of ECG signals.
The parameters of the implemented DSAF are as
follows: the convergence constant is 0.01, the initial
coefficients of filter are all 1, £ is 0.01, Ry is 1,

and the initial order of filter set as shown in table 1.
The ECG signals used in experimentation are the
MIT-BIH ECG signals (MIT-BIH 101, MIT-BIH 105,
MIT-BIH 202) and the normal ECG signal generated
from Kontron Medical’s Arrhythmia Simulator 994.
First, in our experiment on the MIT-BIH ECG signal,
we added the artifact and 60Hz electric power line
noise in these ECG signal and filtered these signals.
The reference signal of the adaptive filter used these
noise signals. The filtered results (the outputs of the
adaptive filter) are shown in Fig. 2, where the filter
order is converged to minimize the distortion of ECG
signal. In the second experiment, ECG signal, artifacts,
and power line noise were generated from Kontron
Medical’s Arrhythmia Simulator 994, and are the
acquired signal by BioPac’s MP100. The signal is a

combination of the healthy person’s ECG signal (5V,.
p), 60[Hz] noise (1[V,.,]) and muscular artifacts which
is random noise with 1[V,.,], as shown in Fig. 3 and
Fig. 4; the reference signal of the LMS adaptive filter
is obtained from sampling the signal containing no P-
QRS-T of the ECG signal as shown Fig. 4. The
sampling frequency of the input and the reference
signals is 200Hz; the resolution is 8bits. We simulated
the proposed LMS adaptive filter and the general
LMS adaptive filter. Figs. 5, 6, 7, and 8 show the
experimental results. The LMS adaptive filter’s filter
order was set as 5-th; after convergence and filtering,
the ECG signal was distorted. The output error of the
LMS adaptive filter is shown in Fig. 5. The absolute
average etror

' P
AAE =1/P)]|S(P-k)-S(P-k)],
k=0

which is one of the output performances, of the
general LMS adaptive filter was calculated as
0.0566[V] for one ECG period. Fig. 4 shows the
distortion in the ST-segment. Figs. 6 and 7 show the
output and the error signal of the LMS adaptive filter
with a dynamic structure. The LMS adaptive filter’s
filter order was set as 5-th; after convergence and
filtering, the ECG signal was distorted. The order is
shown in Table 1. The absolute average error (which
is one of the output performances) of the general LMS
adaptive filter was calculated as 0.0566[V] for one
ECG period.

Fig. 4 shows the distortion in the ST-segment. Figs.
6 and 7 show the output and the error signal of the
LMS adaptive filter with a dynamic structure. Its

Table 1. Simulation results in vary ECG signal with
the noises; GAF: General LMS adaptive
filter, DSAF: the proposed LMS adaptive
filter, AAE: Absolute average error, 10:
initial filter order, and FO: final filter order of

DSAF.
Noise [Vp-p] Filter
Filter S}iag(igl - =0 AAE | order
Artifacts [Hz], o) 0
MIT-BIH
I 1 1 ooz | 2 | -
MIT-BIH 1 02 |oo025| 5 | -
GAF 105
MIT-BIH
o 0.5 1 | 0069 | 10
AS994 1 1 | oo0s6 ]| s
MIT-BIH
s 1 1 oo ]| 2| 3
MIT-BIH 1 02 | 0000 | 5 | 4
DSAF
s 0.5 1 o021 | 10| 3
AS994 ! 1 Joos| 5] 2
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Fig. 3. Original ECG signal.
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Fig. 4. Noise + ECG Signal.
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Fig. 6. Output error of the general LMS adaptive filter.
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Fig. 7. Output of the proposed DSAF.

0% ] T T T t

st

a0sk

TS i W @ i 406 o a3
Time{Samples x 0.005s]

Fig. 8. Output error of the proposed DSAF.

absolute average error (0.0142[V]) is superior to that
of the general LMS adaptive filter. The filter order

was set as 1-st in the beginning, but it was 2-nd at
convergence. The results of filtering the two kinds of
ECG are shown in Table 1. As seen in Table 1, the
proposed DSAF showed better pertormance in
minimizing the distortion of the ECG signal than the
general LMS adaptive filter did.

5. CONCLUSIONS

Biomedical signals play a crucial role in the
diagnosis of patients. A new structure and algorithm
for the LMS adaptive filter with a dynamic structure
was suggested, as signal changes in time and can be
variously mixed with noise depending on the
environment and based on the patient’s condition.
Excessive filtering results in a distorted signal. To
verify performance, we selected two kinds of ECG
signal and evaluated the performance of the proposed
DSAF for these signals. The LMS adaptive filter is
widely used to filter the ECG signal, but the existing
LMS adaptive filters adapt to the environment
showing limitations in the given filter, so its
convergence and performance cause distortions and
even poor performance, depending on the
environment and the patient’s condition. In contrast,
the proposed DSAF provided better performance in
the experiment. Here, the optimal filter order with
minimum distortion of the signal was obtained.
Therefore, we can expect improved performance
when the suggested LMS adaptive filter (DSAF) is
applied to ECG signal processing.
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