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Reconfiguring Second-order Dynamic Systems via P-D Feedback

Eigenstructure Assignment: A Parametric Method

Guo-Sheng Wang, Bing Liang, and Guang-Ren Duan

Abstract: The design of reconfiguring a class of second-order dynamic systems via
proportional plus derivative (P-D) feedback is considered. The aim is to resynthesize a P-D
feedback controller such that the eigenvalues of the reconfigured closed-loop system can
completely recover those of the original close-loop system, and make the corresponding
eigenvectors of the former as close to those of the latter as possible. Based on a parametric
result of P-D feedback eigenstructure assignment in second-order dynamic systems, parametric
expressions for all the P-D feedback gains and all the closed-loop eigenvector matrices are
established and a parametric algorithm for this reconfiguration design is proposed. The
parametric algorithm offers all the degrees of design freedom, which can be further utilized to
satisfy some additional performances in control system designs. This algorithm involves
manipulations only on the original second-order system matrices, thus it is simple and
convenient to use. An illustrative example and the simulation results show the simplicity and
effect of the proposed parametric method.

Keywords: Second-order dynamic systems, eigenstructure assignment, P-D feedback,

parametric method.

1. INTRODUCTION

Reconfigured control systems (RCS) posses the
ability of accommodating system failures automatically
with some prior assumptions. The research for RCS is
largely motivated by the control problems encountered
in designing the aircraft control systems. Its main aim
is to achieve the so called "fault-tolerant” or "self-
repairing” capability in flight control systems, so that
these designed control systems can work properly or
safely.

In recent years, RCS has drawn much attention of
many researchers, and many new methods and
schemes have been proposed (see e.g. [1-7] and their
references). In addition to linear quadratic regulator
method [1], pseudo inverse method [2], inverse
component-mode synthesis method [3], Lyapunov
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method [4] and LMI method [5], eigenstructure
assignment method [6,7] becomes more and more
attractive. Based on the fact that the performances of a
control system are mainly determined by their
eigenvalues and the corresponding eigenvectors, thus
eigenstructure assignment method is convenient to
redesign a new gain matrix in order to recover the
eigenvalues of the normal control system and make
their corresponding eigenvectors of the reconfigured
closed-loop systems as close to those of the normal
closed-loop system as possible.

In this paper, we consider the design of
reconfiguring a class of second-order dynamic system.
Based on the result for parametric eigenstructure
assignment via P-D feedback in second-order dynamic
systems proposed by Duan [8-10], a parametric form
of all the resynthesized gain matrices is derived and a
corresponding algorithm for this reconfiguration is
proposed.

This paper is organized as follows: in Section 2, the
reconfiguration problem in a class of second-order
dynamic systems via P-D feedback is formulated.
Section 3 gives the preliminaries to solve this problem
in study. The parametric expression of the
resynthesized gain matrices and the corresponding
algorithm is established in Section 4. To demonstrate
the simplicity and effect of the proposed parametric
method, an illustrative example and the simulation
results are given in Section 5. Remarking conclusions
are drawn in Section 6.
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2. PROBLEM FORMULATION

Consider a class of second-order dynamic systems
in the form of

EG—Aq—-Cq=Bu, )

where geR” and yeR’” are the state vector and

the input vector, respectively; E, A, B and C are
known matrices with appropriate dimensions, and
satisfy the following assumptions:
Assumption Al: rank(E):n’ rank(B) =r .
Assumption A2: The matrix triple (E, A, B) is
controllable, that is,

rank[A—sE B]=n, VseC. 2)

Because of the outstanding variations, the system
(1) becomes into the following form

Erqr—Arqy~Crqp=Buy, €)

where ¢ eR” and yeR™ are the state vector
and the input vector, respectively; F IE A 1o B r
and C, are also known matrices with appropriate

dimensions, which can be regarded as the disturbance
matrices of E, A, B and C in the system (1),
respectively, and satisfy the following assumptions:

Assumption A3: Tank(E )=n rank(B;)=r,
Assumption A4: The matrix triple (Ey,47,B/)
is controllable, that is,

rank[4, —sE; Bs]l=n, VseC. 4)

For convenience, we call system (1) the normal
second-order dynamic system and system (3) the fault
second-order dynamic system.

For control applications, second-order dynamic
systems are usually transformed into their first-order
linear systems. Thus, the normal second-order
dynamic system (1) is equivalent to the following
first-order linear system:

E'i=A'x+Bu, (5)

where

ooy 8 ofe 2 ol fhe

Similarly, the fault second-order dynamic system

(3) is turned into the following first-order linear
system

E'f).Cf=A'fo+B'fuf, (7)
where
f: =
0 E;| /¢, 4 ®

B, = X, =|.
! {BJ ! Llf.

Applying a P-D feedback control law
u=Koq+K,g=Kx, K=[K, K;]eR"™* (9)
to system (5), yields the closed-loop system as
E'x=4,x, A, =A+B'K. 10)

Recall the fact that non-defective matrices possess
eigenvalues which are less insensitive with respect to
parameter perturbations, thus we only consider the
eigenvalues of the closed-loop system (10) are distinct
and self-conjugate. Denote

O-(E'aAc):{Sisi:L 2,“‘,271},

where s;,i=1,2,---,2n | are self-conjugate and
distinct, and o(M,N) represents the set of finite

eigenvalues of the matrix pair (M, N). Further,
denoting the corresponding eigenvectors of the matrix

pair (£',A4,) associated with s; €eC by v; eC™,
produces

E'Visi=AcVi’ i=1,2,"‘,2n. (11)
Applying the following P-D feedback

uf =Kfo,Kf :[KfO Kf]]ERmxzny (12)

to system (7), we obtain the closed-loop system as
follows:

E'fxf:Afcxfﬁ Afc:A'f+B'fo‘ (13)

For simplicity, we call system (5) the normal
system and system (10) the normal closed-loop
system. Correspondingly, (7) is called the fault system
and (13) is called the fault closed-loop system.
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Based on the fact that the internal behaviors of a
control system are determined by its eigenvalues
together with the corresponding eigenvectors, and the
performances of its closed-loop system can be
improved by modifying the eigenvalues and the
corresponding eigenvectors with some feedback
control laws, then the problem of reconfiguring
second-order dynamic system (1) via P-D feedback

(12) to be solved in this paper can be stated as follows.

Problem RPD: Given matrices E, A, B and C
satisfying Assumptions Al and A2, matrices E,,

Ay, By and C, satisfying Assumptions A3 and

A4, and a set of self-conjugate distinct complex
numbers s;,i=1,2,---,2n, then resynthesize a new

P-D feedback gain matrix K s in (12) such that
G(E',Ac) = O'(E'f’ Afc) = {Sii i= 1’ 2""’ 2”} 5 (14)
and

2
Ji:HVi_Vf,-” , i=1,2,---2n, (15)

are minimized, where v, v; eC? are the
eigenvectors of the matrix pairs (E',,4.) and

(E',A.) associated with s,, respectively.

Remark 1: According to the description of Problem
RPD, when the relation (14) is satisfied, there holds

E'fvﬁsizAfCVﬁ’ i=1,2,---,2n. (16)

3. PRELIMINARIES
Denote
A =diag(s1,52, "‘,Szn) y 14 =[V] Vs "'V2n]’ (17)

then equations in (11) can be written in the following
compact form:

AV +B' KV =E'VA . (18)
Further, denote

W=KV, (19)
Then (18) is changed into

AV +B'W=EVA. 20)

Noticing (6) and letting

Vi
v Lq,vp%ecmh, 1)

2

we can obtain from (20) that

vy =ViA, (22)
and
AVy + BW =EV,A - CV. (23)

If the matrix triple (E,4, B) is controllable,
applying some elementary matrix transformations to
matrix [4—sE B], we can obtain a pair of

unimodular matrices P(s)e R""[s] and Q(s)e

RO M+ [6] satistying
P(s)[A—sE BIQ(s)=[0 I], VseC.  (24)

Partition Q(s) into the following form

O () Ona(s)

, R™"[s]. (25
Or1(s) sz(S)} On(s)e [s1. (23)

Qs) = {

Then we present the following theorem, which
gives the result of parametric eigenstructure
assignment for the second-order dynamic system (1)
via P-D feedback (9) and utilizes the original system
matrices in second-order dynamic system (1). The
proof of the following theorem can be found in [9].

Theorem 1: Given matrices E, A, B and C
satisfying Assumptions Al and A2, and a group of
distinct and self-conjugate scalars s;,i=1,2,---,2n
then
1) When the matrix triple (E, A, B) be controllable,
the matrix triple (E',4',B') is also controllable if
and only if there are a pair of unimodular matrices

H(s)eR™"[s] and

Ly(s) Lip(s)

Ho)= |:L21 (s) Ly(s)

} ,Li1(5)eR™[5], (26)

satisfying the following equation
HSQp($)P)C +sI =) =0 1].27)

2) When the above condition is met, the parametric
expressions for all the matrices V' and W satisfying
(22) and (23) are given by their column vectors,
respectively,

v | Lu(sy)
i _I:VZi:|_|:SiL11(Si)}gi, 28

and



112 Guo-Sheng Wang, Bing Liang, and Guang-Ren Duan

w; =[021(s;)Ly1(5;)— Q22 (5;)P(s;)CLy 1 (5;)]g; (29)

where v;; e C"and v,; € C", are the column vectors
L 2i >

of ¥, and V,, respectively, and the corresponding

P-D feedback gain matrix K satisfying (18) is
determined by

K=wv, (30)

where g; €C",i=1,2,---,2n, are a group of free
parameter vectors, satisfying the following two

constraints:
Constraint C1:

gi:gj = Sj:Sj ’ia .]=1 3 2 PR 2"’

Constraint C2:
L L

det[ 110518 11(521)8 24 }&O.
siL(spgy SonLAS2n)&2n

4. SOLUTION TO PROBLEM RPD

Due to Assumptions A3 and A4, and Theorem 1,
we can know that if the matrix triples (E,,4,,B/)

and (E'f,A'f,B'f) are both controllable, the 2n
eigenvalues of the matrix pair (£',,4,) can be

assigned arbitrarily via P-D feedback. Thus the
eigenvalues s;, i=1,2,---,2n , of the matrix pair

(E',A.)can be assigned to those of the matrix pair
(E'y,Ay) via P-D feedback. Then the relation (14)

in Problem RPD is satisfied and the main task left for
the solution to Problem RPD is to design a P-D
feedback such that (15) holds.

Clearly, denote

Vf:[vfl Vf2"'Vf2n], (31)

then equations in (16) can be written into the
following compact form

E Vi N=AyV, +B K V,. (32)
Further, denote
Then (32) is changed into the following form

E ViAN=A,V,+B W, (34)

Noticing (8) and letting

yoo| VoV py €CP2 (35)
f sz s f ’ f s

from (34), yields

Via=VpA, (36)
and

AV o+ B Wy =EVeyA=CrVpy. 37

Due to Assumptions A3 and A4, applying a series of
elementary matrix transformations to matrix
[4f —sE; Bj], we can obtain a pair of unimodular
matrices Py (s) € R™"[s] and Q(s) e RU™*+m)

[s] satisfying

Py(s)[A; —sE; Bf]Qf(s):[O I1,¥seC. (38)
Partition O/ (s) into the following form

0l (s) 05(s)

. O/(s) eR™™[5]. (39)
Qﬁ@)Qé@J ne ’

Qf(S){

By utilizing the same method in Theorem 1, we can
obtain the following theorem, which gives solutions to
(36) and (37).

Theorem 2: Given matrices Ef , Af » By and
C satisfying Assumptions A3 and A4, and a group
of distinct and self-conjugate scalars s;, i=1, 2,
-+, 2n,then

1) When the matrix triple

(Ef,As;,By) s
controllable, the matrix triple (E'y,A4's,B';) is
also controllable if and only if there are a pair of
unimodular matrices H (s) e R""[s] and

L (s) Ll,(s) y
Ly(s)=|"} 1287 1T () e R™™[s], (40
f@){gﬂﬂ L /() e R™™[s], (40)

satisfying the following equation

H ()< [Q (5)Pr (5)C

(41)
+sI -0l (s)=[0 I].

2) When the above condition holds, the parametric
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expressions of all the matrices ¥V, and W,

satisfying (36) and (37), are given by their column
vectors, respectively,

f
Vflz} L Gs;)
vy = 7y (42)
A {szz' SiL{l(Si) f

and

ws =04 (5L, (s;)

(43)
= 0% (5P (s)C L (s)]g 5

where v,; €C" and v,y eC”, i=1,2,--,2n,
are the column vectors of ¥V and ¥V, , respectively,
and g, eC” ,i=1,2,---,2n, are a group of

arbitrary parameter vectors.

Let
Li(s;) L (s5)
F(s;)= , Fe(sp)=| 170710 (44
G L,-Lu(siJ 76 LiL{gs,J e

then (28) and (42) are equivalent with the following
forms:

v, =F(s;)g;i, i=1,2,---,2n, (45)
and
Vﬁ :Ff(si)gﬁ’ i=1,2,~~-,2n, (46)

respectively. Substituting (45) and (46) into (15), then
we can obtain

2

Ji=|F(s)gs - Fls)g| » i=1.2.+,2n. (47)
By using orthogonal projection, we can obtain

1

en =l soFp s 6oFGDg, @)

which minimize the indexes in (47). Further, let
H UH

zo=lFf soF o] FE soFs. @)
Then (48) is changed into

gﬁzzlgl, i=1,2,---,2n. (50)
Substituting (50) into (42) and (43), yields

vy =Fp(s)%g, i=1,2,,2n, 1)

and
vﬁ:Ff(si)zigia i=1,2,-,2n, (52)
where

¥ 5(5;) = O (5)Lhy (1) = O (1) Py (5)C L (5,).
(53)

Further, Vg o,
[=1,2,-,2n of the matrix pair (£',,A4, ) are

noticing that the eigenvectors

linearly independent, that is
det(V ;) #0. (54)
From (33), we can obtain
-1
where

Wf :[Wfl Wf2 wan]’Vf :[vfl sz "'szn] .
(56)
In order to guarantee the realness of the gain matrix

K in (55), the following constraint must hold:

Constraint C3: $;=5; o 2;=2; g,=§8;

s

i5j=1,2a"'92n

Moreover, the condition (54) and Constraint C2 are
clearly equivalent with the following two constraints,

respectively,
Constraint C4:
det[F/ (s1)Z; 8, Fr(52,)22,82,170;
Constraint CS:
det[F(s1)g1 F(s2)g2 F(s2,)821170.

From Theorems 1, 2, and the above deductions, we
can give the following theorem, which gives the
solution to Problem RPD.

Theorem 3: Let matrices E, A, B and C satisfy
Assumptions Al and A2; matrices E Iz A 1 B r

and C, satisfy Assumptions A3 and A4

§;,i=1,2,---,2n, be a group of distinct and self-
conjugate scalars. When the condition 1) in Theorem
1 and the condition 1) in Theorem 2 are satisfied, then
all the desired solutions K s in Problem RPD can be
(55) with the
g;€C",i=1,2,---,2n, satisfying Constraints C3-C5.
1-3 and the above

given by parametric  vectors

According to Theorems
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deductions, the following algorithm for Problem RPD
can be proposed.

Algorithm RPD:
1. Calculate a pair of unimodular matrices P(s) and

O(s) satisfying (24), and partition Q(s) as in
(25);

2. Calculate a pair of unimodular matrices H(s)
and L(s) satisfying (27), and partition L(s) as in
(26);

3. Calculate a pair of unimodular matrices P, (s)
and Q 7 (s) satisfying (38), and partition Q f(s)
as in (39);

4. Calculate a pair of unimodular matrices H ,(s) and
L (s) satisfying (41), and partition L (s) as in
(40);

5. Find some parameters g; eC’,i=1,2,---,2n,
satisfying Constraints C3-C5 and calculate the
matrices ¥, and W, according to (50) and (51),
respectively;

6. Calculate the P-D feedback gain matrix K,
according to (55).

5. AN ILLUSTRATIVE EXAMPLE

Consider a normal second-order dynamic system in
the form of (1), with the following parameters:

1 0 0 -25 05 0
E=l01 0| , 4=l05 -25 2| ,
0 0 -1 0 2 =2
(1 0 -10 5 0
B=|0 0], C=| 5 -25 20|,
10 1 0 20 -20

and its corresponding fault second-order dynamic
system in the form of (3), with the following
parameters:

1 0 0 -24 05 0
E;=|0 1 0|, 4,=[05 -24 2|,
0 0 -1 0 2 -1

109 0 -15 5 0
Bf: 0 0 N sz 5 —25 20
i 1 0 20 -25

Easily, we can find that the matrix triples (£, 4,B),
(E'.A',B"), (E;,A;,B;) and (E'y,A';,B')

are controllable. In this example, we choose the
eigenvalues of the normal closed-loop system as

) =5, =—-3.105+£4.356i, s3=—4, s4=-5,
55 =5g =—6.458+1.356i .

Algorithm RPD is utilized to solve this
reconfiguration problem. The results of each step are
given as follows:

1. Calculate a pair of unimodular matrices satisfying
(24) as P(s)=diag(l, 2,1)and

[ 2545 -4 10 1 0]
|
| 1 0 !0 0 0
O(s) = 0 1 10 o of

|
] -2 2-s 10 0 1

2. Calculate a pair of unimodular matrices satisfying
(27) as

~0.005 0.005(2s +5) —0.02
H(s)=| 0 -1 o |,
0 0 -1
262 455450 —4125-15 0 0]
s+10 01 1 00
L= _____ 0 _____ 1 0 00
s(s +10) 0 = 10
0 s1o0 01

3. Calculate a pair of unimodular matrices satisfying
(38)as Py(s)=1; and

1 0 10 0 0
0 I 0 0 0
0/)=| ~% ____&+ds {0 1 ol
gs+3 -3 0o
[ Ls-3 —i-Zs-ds?10 3-4s 1)

4. Calculate a pair of unimodular matrices satisfying
(41) as

O
[
(o)

Hf(S)=

A=
|
~

{on
+
I
%}
N’
—
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L(s)=
| 4 0 Lo 0 0
i
2 2 2
0 l—m+"i*()—1‘s E O 0 “m
25 i2 1 2 38 i
gttt 0 0 s
4s 0 P21 0 0
2 ! 2
L0 101(10+s)s ! 0 -1 ~557¢ |

5. Specially choosing a group of parametric vectors as

— — i+i -1
B1=82785%86 = f—il’ g3 =84+ B

2 x 10
e
1 —_—— 2
———— 3
o]
-1
=
2.
-3
4
5.
v
57 . . . tis
5 7é 77 78 79 8Q

Fig, 1. Responses of the first state.

; . . . s
Y5 76 77 78 79 80
Fig. 2. Responses of the second state.

3x1c>28
R
25 —¥ 2

—_—3

2

05 . . . . s
0595 76 77 78 79 80

Fig. 3. Responses of the third state.

which satisfy Constraints C3-C5. From (50), we can
easily obtain matrix V.

6. Form (55), we can obtain the desired feedback gain
matrix K, =[K o K], where

[-31‘3839 67.6740 ~569,3502]
0= »

07406 -233790 365265
_[96161 08725 -949544
P71 00976 -20302 92761 |

Moreaver, from (28) we can easily abtain ¥, and
the corresponding gain matrix is obtained as
K=[Ky K], where

[~31.3839 67.6740 -569.3502]
0= s

07406 -233790 365265
_[96161 08725 -949544
V7100976 220302 92761 |

Then we can obtain

minJy =minJ, =0.8177, minJ; =0.0759,
min /4, =0.0961, minJg =minJg =0.3695,

which show the effect of Algorithm RPD.

In order to further show the effect of Algorithm
RPD, we give the simulation results of three states in
this second-order dynamic system, where "1", "2" and
"3" sepresent the response curves of the states of the
normal closed-loop system under K, the fault closed-
loop system under K, and the fault closed-loop system
under K, respectively, in Figs. 1-3.

6. CONCLUSION

In this paper, we consider reconfiguring second-
order dynamic systems via P-D feedback. By utilizing
the freedom degrees offered by a parametric result of
eigenstructure assignment in second-order dynamic
systems, a parametric expression for all the P-D
feedback gain matrices, which can recover the
eigenvalues of the normal closed-loop system and
make the eigenvectors of the fault closed-loop system
as close to those of the normal closed-loop system as
possible, is established and an algorithm for this
design is proposed. The parametric method offers all
the design degrees of freedom, which can be further
utilized to satisfy certain specifications in control
system designs, such as robustness etc. An illustrative
example and the simulation figures show the effect of
the proposed algorithm.
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