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Accurate Vehicle Positioning on a Numerical Map

Jean Laneurit, Roland Chapuis, and Frédéric Chausse

Abstract: Nowadays, the road safety is an important research field. One of the principal
research topics in this field is the vehicle localization in the road network. This article presents
an approach of multisensor fusion able to locate a vehicle with a decimeter precision. The
different informations used in this method come from the following sensors: a low cost GPS, a
numeric camera, an odometer and a steer angle sensor. Taking into account a complete model
of errors on GPS data (bias on position and nonwhite errors) as well as the data provided by an
original approach coupling a vision algorithm with a precise numerical map allow us to get this

precision.

Keywords: Multisensor fusion , Kalman filter, GPS, artificial vision.

1. INTRODUCTION

Developing systems to improve driving security has
become a major research field in recent years. There
are many international projects such as
PROMETHEUS', ROADSENSE” and french nation-
al project in the framework of the PREDIT program
like PAROTO’ and ARCOS®. One important purpose
of the embedded systems is to localize a vehicle in the
road network (GPS/Map navigation system). However,
if the system has to provide an active control of the
vehicle (automatic cruise control, automatic lightning
control, collision avoidance, ...), localization becomes
unavoidable. The localization must be precise and
robust. Differential GPS is to provide a sufficient
accuracy (about one centimeter) but this system has
major drawbacks :

e a fixed transceiver must be used in addition to the
on-boarded mobile GPS receiver,

o the cost is prohibitive for a wide scale public
marketing,

e it is very sensitive to satellite occlusions (due to
buildings, bridges, ...).

We have designed a system able to avoid these
disadvantages. It provides localization information
with an accuracy of about 10cm. It is a low cost
system and easy to load on board which is also rather
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insensitive to GPS data losses. Our system is
constituted of the original association of :

e an image processing algorithm giving precisely the
lateral position and the orientation of the vehicle
with reference to the road sides (local positioning),

¢ a low cost, low precision GPS,

e proprioceptive sensors (odometer, steer angle) to
predict the vehicle motion,

e an accurate numerical map of the road network.

This method is fully described in this article. The
bibliography of the first section underlines the
frequent use of GPS for vehicle localization and
specifies systematically that GPS are subject to a bias
and are perturbed by a non white noise with normal
PDF. These well known characteristics of GPS data
are commonly neglected and the error is considered as
a white noise. We have observed this last assumption
leads to a serious decrease of the accuracy. This article
proposes a solution to solve that problem by
estimating the bias in the same process as the
localization parameters. A correct modeling of GPS is
necessary : the model we propose is the result of many
experiments and constitutes an original aspect of this
work. All are explained in the second section.

The third section describes how information provided
from image analysis is included in cooperation with a
numerical map. The vision/map coupling presented in
this section makes it possible to convert the local
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information calculated by the vision algorithm into
global world reference. The information provided by
the vision system being very precise (better than 10cm
for the lateral position), the system is able to reach the
desired precision.

The estimation of localization parameters
necessitates a prediction step and its description is in
the fourth section. Finally, the fifth section presents
the experimental results showing the validity of the
method.

1.1. Classification of vehicle localization methods

The numerous methods designed to localize a
vehicle or a robot in its environment are often
classified into three categories: relative localization,
absolute localization and hybrid localization.

1.1.1 Relative localization

In a relative localization [4,8,24], the position and
orientation of a vehicle are obtained taking into
account its successive displacements from a known
starting position: travel distance, speed, acceleration,
gyration angle. These systems estimate the vehicle’s
position quickly and frequently. This is why they are
often chosen for mobile robots in military or spatial
applications. Relative localization is cheap and easy to
use. Unfortunately, the derivation of the estimation
during time is a main drawback.

1.1.2 Absolute localization

This method determines the position of a vehicle or
a robot in its environment (indoor or outdoor). It is
based on the use of exteroceptive sensors (mainly
GPS [14,26]). It can use either natural [15,18] or
artificial landmarks [3,23]. The environment has to be
known thus a map is necessary [13,20]. There is no
derivation of the estimated position during time like
with relative localization but the landmarks can
become invisible from the robot and the localization is
then impossible for a while.

1.1.3 Hybrid localization

Both of the localization categories described above
use different types of sensors. They provide imperfect
measures, which means incomplete, uncertain, and
erroneous measures. The comparison (Table 1) of
their respective advantages and drawbacks makes
their complementarity appear.

In order to palliate their drawbacks and to cumulate
their advantages, many systems [3,6], combine the
two kinds of methods within a data or multi-sensor
fusion framework. The fusion is then made using
three types of methods: statistic, probabilistic or
grouping methods.

1.2. Different methods for data fusion
1.2.1 Statistical methods : Kalman filter

Table 1. Comparison relative vs. absolute localization.

Relative localization

Absolute localization

(-) Accumulated error
when the distance in-
creases

(+) Error independent of
the distance

(-) Reference linked to
the initial position of
vehicle

(+) Absolute world ref-
erence

(-) Environment must
sometimes be adapted

(+) No particular equip-
ment in the environ-ment

(-) Less frequency use
(-) Possible loss of in-
formation

(+) More frequency use

It is a classical tool for mobile robot [25]. The
localization parameters are grouped into a state vector

X . The estimation X is updated from the former
value Xk—l using proprioceptive sensor data

available at time ¢, . The estimation takes also into

account the covariances on the estimation and on the
sensor data. If necessary, the equations are linearized
around the last estimation. This is the extended
Kalman filter [9,12,21] for which two stages are
required:

e prediction stage: from the preceding estimation,
and according to the values given by
proprioceptive sensors and to an equation of
evolution, the next value of the state vector is
predicted,

¢ when information from an exteroceptive sensor is
available, it is used to correct the predicted state.

A correct estimation will be obtained if the initial
position of the vehicle is known with a sufficient
accuracy and by knowing the statistical behavior of
the data as well as their degree of uncertainty.

1.2.2 Probabilistic methods: particles filter
In principle, particles filters [1,17,22] approximate
the Probability Density Function (PDF) of the vehicle

state X from a set of N weighted samples called
particles (X ,,m;), m; being the weight and /=1,..,N.
The process can be divided in three steps:

e re-sampling step: from the the PDF P(X, |z )
(z;_; represents all the data measured up to time

t;,_1) N particles are aleatory drawn, each one

receiving a weight equal to % .

e prediction step: the new position X it of each
=

sample is predicted from the preceding position
using the entries.
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e updating step: measures z; from exteroceptive

sensors are taken into account and the weighted
becomes P(z; | X, y ]), namely the probability of
=

observing z; being positioned on X, Lt Then
JU=

the PDF is also updated end becomes P({J. | zj).

This approach requires no particular knowledge
about the initial position of the vehicle: at the
beginning, the PDF of the particles are uniformly
dispatched among all the possible positions. However,
particles filters can manage multi-modal PDFs
appearing when uncertain data can lead to several
possible solutions. It is an important advantage when
systems are highly non linear. The main drawback is
the calculation time increasing with the number of
particles.

1.2.3 Bounded error methods

These geometric approaches [11,19] are very
interesting when no particular hypothesis on the PDF
of the measurement errors can be made except for
their lower and upper bounds. In particular, errors
don’t have to be independent or centered. In general,
the bounds are provided in the sensor data sheet as an
uncertainly interval in which the true value is included
with a reasonable probability. Then for a given
position of the vehicle, knowing the exteroceptive
measures and the magnitude of their respective noise,
a system of inequation is set up, the state must be
satisfy.

The result is a polyhedron in the state space. It is
determined iteratively by intersection of the current
polyhedron with the interval corresponding to the
current measure. The final polyhedron has a complex
shape as the number of facets is not bounded. This is
why simple shapes are often used (generally ellipsoids
described by a center and a positive matrix) including
all the possible values. Several algorithms can help
determining  the ellipsoids: minimizing the
determinant of the matrix associated with the ellipsoid
[16] (volume homogeneity) or minimizing the matrix
trace corresponding to the sum of the square half-
length of the ellipsoids axis.

This method has a main drawback: finding a correct
solution is not guaranteed if the measure equations are
non linear regarding the state parameters.

1.3. Our approach

According to the classification made in Section 1.1.
we propose an hybrid localization method with
proprioceptive sensors (odometer, steering angle) and
exteroceptive sensors (GPS, camera associated with
an image processing algorithm able to detect lane
sides) an a pre-loaded numerical map of the

environment. The data fusion is achieved using a
Kalman filter.

The goal is to estimate the attitude of a vehicle in 2D
reference frame of the world (flat earth assumption).
The estimation must be precise and must use cheap
Sensors.

The attitude is represented by the state vector

associated with its covariance matrix Q.

X, =) (M

with:
e ¥ abscissa of the position in the world reference,
e 7 ordinate of the position in the world reference,

e 7 vehicle orientation angle in the world reference,
and

2
Gy Oy Oy
- 2
Q,= Oy Oy O 2)
2
Oy Oy Oy

The method can be divided into three steps:

e prediction of the vehicle attitude from the last
estimation using the proprioceptive data and an
equation describing the evolution of the vehicle

o state update using GPS data after their conversion
into the chosen frame of reference

¢ state update from the vision data, the translation of
the local information given by the vision algorithm
in made using the numerical map.

Data comes from particular sensor at any time. It
means all the sensors are not synchronized. The
preceding stages can be realized at any times
regardless the order presented above. Each step is
described in the next sections and localization results
obtained in urban area are given.

In addition to the advantages of hybrid solutions
already mentioned, the presented method proposes
several contributions :

Fig. 1. Localization synoptic.
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1. All the other method making use of GPS for
precise robot localization utilize differential
GPS. These devices are less easy to use (need
of a fixed base station or of a subscription to a
differential satellite based correction) and
above all are very expensive. This make them
almost unusable as personal driving assistance
systems. On the contrary, our solution is much
more cheap.

2. More fundamentally, this article presents a
modeling of GPS uncertainties underlying the
existence of a bias parameter added to a non
white centered low level noise. Most of the
time, other methods mention this problem or
simply ignore it. The corresponding solutions
consider a Gaussian probability density
function for GPS uncertainties modeling,
overestimating the variance to insure the
convergence of the position estimation process.
We don’t make such approximations. We
estimate the bias and take its value into account
to compute a more precise GPS position.

3. The main originality of the presented solution
rests on the use of a computer vision algorithm
able to detect lane sides. Coupled with GPS
and a numerical map, it makes it possible to
estimate a very precise absolute localization of
the vehicle.

2. STATE UPDATE BY GPS DATA

2.1. GPS system
2.1.1 GPS system description

GPS (Global positioning system) [5] is a
localization system based on a constellation of 24
active satellites in orbit around the earth at altitudes of
about 20200 km. It provides a position in three
dimension and time traceable to global time standards.
Theses satellites are arranged in six orbital planes that
are inclined at a 55 degree angle, providing worldwide
coverage with at least four satellites visible from any
point on the earth. Each satellite transmits data frames
containing the satellite clock data and orbital data.
Range measurement from four satellites are used to
compute a receiver clock correction and a three
dimensional position.
Two kinds of services are provided by GPS system;
SPS (Standard Positioning Service) available to any
user and PPS (Precision Positioning Service) reserved
for the American government and military users.

2.1.2 Origin of GPS uncertainty
In general three kinds of errors can be distinguished
[10] on the range measurement:

¢ Satellites errors:
- clock errors,

- satellite ephemeris errors.
e Transmission errors:
- tropospheric and ionospheric delays,
- multi-path interferences caused by local re-
flections of the GPS signal,
- satellite visibility.
e Receiver noise and delay introduced by its
components.

2.2. Characteristic of GPS data
2.2.1 Identification

To identify GPS data behavior, GPS coordinates x
and y have been acquired during several hours
keeping the receiver in a static position. It was
positioned near buildings to recreate multi-path
interference situations and GPS signal losses. In Fig. 2,
graphics 2(a) and 2(b) describe respectively the time
evolution of x and y GPS coordinates given by GPS,
graphics 2(c) and 2(d) the corresponding histograms
measuring the probability density function (PDF) ox x
and y considered as random variables. Figs. 2(e) and
2(f) represent the autocorrelation functions of x and y.

For an optimal convergence of Kalman Filter, data
distribution must be Gaussian, centered and white.
According to histograms 2(c) and 2(d) GPS data can be

o w0 me s mw o wma e

o s @ @0 0 om0 uon e o e mm ww wm e e o

) . ®

Fig. 2. Characteristics of the GPS data : x and y
distributions on graphics (a) end (b), x and y
PDFs on graphics (c) and (d), x and y
autocorrelation functions of x and y on
graphics (e) and (f).
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Fig. 3. Variation of GPS data (x coordinate).

considered as centered and Gaussian with a standard
deviation of about 10m. The autocorrelations
functions denote a non white frequency spectrum.
Therefore GPS data can’t feed directly the Kalman
filter, a model according to each hypothesis is
necessary.

2.2.2 GPS data modeling

Glancing at Fig. 3 which is a zoom of Fig. 2(a), the
experimental observations underline a step by step
time variation of GPS data (remember the receiver is
fixed). Anyway, they can be considered as white and
centered around a given step.

In addition, when the number of visible satellites
changes or when multi-path interferences come upon
during the vehicle traveling, data can fluctuate in a
strong way but remain in the confidence interval given
by the manufacturer.

Therefore the model (Fig. 4) can be described this
way: for any position given by GPS, the real vehicle
position is equal to GPS position plus a bias

b=(by,b, Y plus a white noise ve= (Vg v . ).

As shown in Fig. 3 the bias 5 will be supposed

constant between two GPS data and will be subject to
variations smaller than A, (see Fig. 4). Ap can be

described by the following equation:
Ap =GDOPxUERE (3)

with:
o GDOP : Geometric Dilution of Precision
e UERE : User Equivalent Ranging Error.

UERE corresponds to the standard deviation of
GPS data (; 10m). GDOP is an integer transmitted
on the GPS signal in addition to the position’s
coordinates.

Taking into account the model of the GPS data,
observation for the state update is:

Xgpsziak-i_é_’__‘i‘g’ (4)

white noise

real position

GPS position

Fig. 4. Modeling of GPS coordinates.

_ t . . .
where X0 =(Xgp, Vs ) 15 the vehicle coordinates
provided by the GPS, v e

included in the model of the GPS data.
This model has white noise v

and b are the parameters

and could be

treated by the Kalman filter. The bias vector b will

be integrated in the state vector in order to be
estimated at the same time as the parameters x,y,y.

This bias will be supposed constant from one iteration
to another one to ensure convergence of Kalman filter,
but this constant evolution model will called into
question to each detected fluctuation of the bias
(Section 4.2.).

2.3. New state vector
Integrating the bias parameters, the new state vector

called X is:

X =(X byby) = (6, 0,1.0,,0, ) &)
with:
e x and y; the vehicle position coordinates in the

world reference,
¢ v ; the vehicle orientation around the z axis,

e b, and by; bias on the x and y axis related

to GPS measurements.

The new covariance matrix Q associated with this
state vector X is defined such as :

Q- { Q. Qab]
Qba Qb
0)25 Oxy Oxy Oxp, oxby
O O} Oy Oyb,  Oyb,
=[ox Oy OF Op, Oyp, (6)
Obx  Sbyy by Gix Ob,b,
csbyx Gby y Gbyy Gbybx Giy
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with Q, the covariance matrix with the vehicle

attitude defined in Section 1.3. and Q, the
covariance matrix associated with the bias.

2.4. State update
2.4.1 Model of observation

Once the bias is integrated in the state vector, the
observation equation can be written as follow:

with:
H - 1 0010 ®)
€ 1lo1 00 1)

The covariance matrix associated with X eps I8

crfg 0
x
Q s = 2 s (9)
0 oy
&y
where Sy, and o, are the standard deviations
X y

of the bias coordinate (not of the GPS position
coordinates). Their values are about 10cm .

At the first GPS observation, the bias values (b,

and b, ) will be considered as null and the sub-matrix

Q; representing the covariance matrix of the bias

will be initialized with the covariance matrix Qi

given by:
Ap 0
. P .
Qj, = with Ap = FURE * GDOP . (10)
0 A}
2.4.2 Update

Update is realized by Kalman filtering and is
described by the following equations:

Qk+l = Qk + (1 - KgHg )Qk
. -1
with K, =QH,[H,Q,H), + Q]
® X, Istheresult of the update.

e Q.. is the covariance matrix associated with the
state vector X, .,

e K, isthe blending factor.

This filter updates the vehicle’s attitude and correlates

it with bias parameters, in order to prepare its
estimation with incoming exteroceptive information.
If no other exteroceptive information is provided by
the system, then the bias cannot be estimated and the
vehicle position is provided only by the GPS.
Moreover, bias is considered as constant for each
update of the state vector, but as explained in Section
2.2. it may not be the case. Therefore, before each
update, a possible variation of the bias must be
checked. On the contrary all the parameters associated
with bias in state vector and in covariance matrix Q

will be reinitialized (see Section 4.2.).
3. STATE UPDATE BY VISION DATA

As considered previously, the update of the state
vector by other exteroceptive data must allow the
estimation of the bias and consequently of the real
position of the vehicle. So we propose to use a vision
based road-tracker algorithm, giving information on
vehicle position and orientation on the roadway to
feed the update. This information depends on the
vehicle position on the road. The numerical map is
necessary to convert this information in the world
coordinates system.

3.1. Numerical map
3.1.1 Map modeling

The map is constituted by a grid of rectangular
areas (Fig. 5) called facets representing the roadsides
(actually the white lines of the road). The four points
are assumed to be coplanar even if it is not rigorously
the case. Finally, the origin of each facet reference
frame is situated on the left roadside.
For each facet i five informations are available:

e an identifier (here, a number)
e its position in the world reference
represented by vector O,

frame

e its orientation given by the matrix R,

o its length /;

e its width w,

The vector O, and the matrix R; are defined like
this:

xl XIX )/iX ZIX
0;=y;| and R;= Xiy iy Ziy : (12)
Zi X, Y Zz

Matrix R; represents the orientation of the facet i
reference frame such as axis Y, is always in the
direction of the vehicle motion on the road.
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Fig. 6. Map example (military circuit of Satory near
Versailles in France).

3.1.2 Map organization

When the map becomes very wide, the management
of the facets becomes very time expensive. To
decrease this complexity, the map is split in several
sectors inside which contains a restricted number of
facets. So each sector is indexed in the same manner
of a two dimensional table inside of which facets are
numbered between 1 and nf, nf is the total

number of facets in the sector. Figs. 6 and 7 show an
example of map organization.

3.2. Road-tracker algorithm
3.2.1 Description

Within our laboratory, a "vision" algorithm able to
detect roadsides was developed [2,7] (see Fig. 8).
From image primitives representing the roadsides, it
allows to estimate with a good precision some
parameters describing the road geometry as well as
the vehicle position and orientation:

® [y :the road width,
¢ (, :the horizontal road curvature,

* X, :the lateral position of the vehicle on the road,

¥(m}
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Fig. 7. Example of map sector.

Fig. 8. Roadsides detection.

e ¥, :the vehicle orientation,

® 0, :inclination angle of the camera.

Also a covariance matrix associated with these
parameters is estimated. It should be noticed that all
informations are computed in a reference frame
tangential with the road (see Fig. 9).

3.2.2 Modeling of "vision" information
For the localization of the vehicle on the roadway,
only parameters X, and vy, are provided.

Information of the longitudinal position is missing. It
cannot be estimated by this approach and is
considered as null with a very low confidence. Fig. 9
represents each of these parameters with their
confidence intervals.

So we can describe "vision" informations by vector
X ision @nd its associated covariance matrix Q

vision
by :
XOJ

X .. = and
—VIiSion (\IJO

2 (13)

Sx,  Sx,w,

Qvision = 0

2
Owpxo Oy,
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Fig. 9. "Vision" informations.

3.3. "Vision"/map coupling

Information given by the road-tracker algorithm has
a local meaning (in the road reference frame).
"Vision"/map coupling allows to calculate these
parameters in the world reference frame. As shown in
Section 3.2., information given by "vision" is referred
to the left roadside. Which can be considered as the
reference frame described by the orientation matrix
R; associated with the facet carrying the vehicle.

Three stages are necessary to calculate "vision"
information into the world reference frame: (1) the
facet on which the vehicle is located or the nearest one
is searched, (2) vehicle position in facet reference
frame is computed and (3) the vehicle position and
orientation are converted in the world reference frame.

3.3.1 Facet search

Initially, the map sector where the vehicle is
positioned is found. Then, all the facets contained in
this sector having a contrary direction with the road
circulation wise are eliminated. Finally only the facet
where the vehicle is, or the nearest one is selected.
The next paragraph details the facet search.
Facet elimination
At any moment, the vehicle direction can be described
by the following vector (see Fig. 9):

0
Y, =R, 1 (14)
0
with:
cos(y) —sin(y) O
R, = sin(y) cos(y) 0 (15)
0 0 1

and vy is the vehicle orientation in the world

reference frame.
For each facet i, the road direction wise is
described by the vector Y, deduced from the

orientation matrix R. of the considered facet.

1
Therefore, the direction compatibility between the
facet direction and the vehicle direction is given by a
test on the next scalar product:

D=, Y,. (16

If the scalar product is lower than 0, then the
vehicle orientation is not compatible with the road
direction and the vehicle cannot be located.

Facet determination

For each remaining facet, vehicle position in the
facet reference frame is computed by a matrix product.
Using the notation defined in (12), the wvehicle
position is given by the following equations:

X —_
v =
If 0<X<w and 0<Y </, the vehicle is located

on the facet i and the research is stopped. If not, the
distance between the facet origin O; and the vehicle

X, Y

iy Iy [x—xl-] (17)
X; Yiy Y=Yi

ly

position is computed in the facet reference frame.
Finally if the vehicle is not positioned on any facet in
the map sector, the nearest one to the vehicle is
selected.

Now, the facet ! of the road map supposed to
carry the vehicle is known, it is possible to convert
local attitude provided by the road-tracker algorithm
in the world reference frame before update.

3.3.2 Transformation from facet reference frame to
world reference frame
Attitude vector
The transformation from attitude
(X,Y,¥) in the reference frame of the facet i to

the world reference frame is described by the
following relations:

vehicle

szl-xX+Y,-xY+x,-’
y=X,~yX+YI-yY+yl., (18)

=¥ - atan(—%).
Y (Y )

Ly

Considering a flat world, the transformation equations

of attitude vector X = (X 0,0,‘1‘0)’ given by the

= vision
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"vision" system (see Section 3.2.) into the world
reference frame can be deduced. The resulting vector

is named —‘Kvision/m .

XiXXO +xi

X X; Xo+y; (19)

L vision/m —

¥ (K')
—atan(—=*
0 Y,

ly

Associated covariance matrix
To deduce the covariance matrix associated with

vector X .. .., it is necessary to take into account

the possible dispersion of "vision" information.
Indeed this one does not provide only one vehicle
position but a set of positions which are contained in
the ellipsoid deduced from the covariance matrix Q,,.

Fig. 10 describes an example of the possible positions
X; and Y; in the reference frame of facet i for a

given vehicle attitude.

We can see in Fig. 10 that the possible positions
have the same trajectory as the roadsides. As shown in
[2] a road can be locally modeled by a parabola. The
road-tracker algorithm provides the road curvature
C, and consequently vehicle positions on the

roadway can be modeled by the following equations :

Gy 2
X] :7)/] + XO

Yj (20)
‘PjZCOYj+‘I"0.

Possible pesitions in
the confidence interval

Confidence interval on
the vehicle attitude

Fig. 10. Possible positions given by the "vision"
algorithm.

If we consider that Y; fluctuates around ¥ +A,
(with A, the value of the large axis y of the

ellipsoid described by the covariance matrix Q)

then all of the vehicle positions can be computed and
covariance matrix associated with the vector
X visionyy €2D be deduced by the following equations:

t
X;-X) X, -X
Qvision/f =1/N Z Yj -Y Y] -y @1
i=l:N qji _y le _y
+ MvaisionMiz
with:
1 0
M,=|0 0 (22)
0 1
Finally the covariance matrix Q,;s,.mm associated

with the vector X in the world reference

2 vision/m
frame is:
Qvision/m = Mvaision/fMtp (23)
with:
Xix Iy 0
0 0 1

3.4. State update
3.4.1 Model of observation
The model of observation for "vision" data is
described by the following equation:
X

2 vision/m

=H, X, +v, (25)

with:

(26)

v

— O O

1 0 0
H, =10 1 0
00 0

S O O

The variance of the noise v, is modeled by

covariance matrix  Q,;somm -

3.4.2 Update
In the same way as for GPS, the state update is
realized by a Kalman filter:

{X}m = X, + KX
Qra = Q¢ +

vision HV Kk)

27
(1 _KVHV)Qk ( )
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. t -1
with Kv = QkHi/[HvaHv +Qvision]
® X, istheresultof the update,
e Q,, is new covariance matrix associated with

state vector,
e K, isthe blending factor.

4. PREDICTION STAGE

4.1. Prediction of the state vector
The evolution model allows to write the recurrent
relation between state vectors X,., and at time

k+1 according to its value X, and to parameters

provided by the proprioceptive sensors at time k.
This information is the wheel angle & and the
traveled distance of the vehicle A, between time &

and time k+1.
X =S(XpUy) with U, =(A4,9) (28)

The model used, is a bicycle model (Fig. 11).
The new vehicle position (x,y),,; can be defined

according to (x,y); , knowing A, and §.
(x,m J _ (xk J . [co.s(yk +8) ~sin(y, + 6)][ 0 ] 29)
Yiw1) A\ \sin(yp +8) cos(y, +0) A,
therefore:

Yesl =V +HAgcos(y+9).

The new vehicle orientation vy,,; is given by the
following equation:

Yiel =Yk T4, €2

Fig. 11. Bicycle model.

with:
Adsm(ﬁ)

L+ Aycos(d) ' (32)

AY = arctan

Finally, no evolution on the bias is computed because
it is considered as constant between two GPS data
(see Section 2.2.).

Considering (30) and (31), the evolution of the state
vector can be written like this:

Xe =X, — Agsin(y, +9)

Vit = Ve + Ay cos(yy +0)

Vet =Vt A, (33)
bey =05,

by =0y,

And the new covariance matrix associated with the
state vector can be deduced from the following
equations:

Qk+l = JeCeJZ > (34)

where C, is a covariance matrix constituted by Q,
and  Qy,
U,=(A4,8) . And J,
deduced from the evolution equations.

associated with the entries vector

1s the Jacobian matrix

Q 0 o2
C,= 0" ] with Qy, =| (35)
Qu, 0 o3
and
— aik+1
¢ a(xk,ykayk’Ad36)
1 0 -A;,Cvd 0 0 —Syd —-A, Sy
01 -A,S 0 0 Cyd -A,Cyd
daY Y at (36)
oA, oA,
=0 0 1 o0 —— —
oA, oA,
0 0 I 0 0 0
0 0 0 01 0 0
with:
Syd = sin(y, +90),
i (Yx +93) 37)

Cyd =cos(yy +9).

Fig. 12 shows the displacement of the vehicle between
time &k and time k+1 and the confidence intervals
on the vehicle position.
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4.2, GPS prediction and bias management
4.2.1 Prediction of the new GPS position

As it was explained in Section 4.2. the bias is
assumed as constant from one iteration to another one,
but it can fluctuate at any moment. Therefore it’s
necessary to compare the prediction of the new GPS
position with the real GPS position to detect
variations of this one before using GPS data to update
the bias.

If the bias is considered as constant between two
GPS data, trajectory of GPS positions must be parallel
to vehicle trajectory and GPS positions displacement
is the same ones of the vehicle displacement. So,
considering (30), for any new proprioceptive data, the
new GPS position can be predicted like this:

Xgpsgy = Xapsy ~Dasin(¥g +9), G8)

ygpskﬂ = ygpsk + AdCOS(Yk + 6)

The new covariance matrix associated with the GPS
position is given by the next relation:

Qepskir = T¢Cel (39)

where C, is a covariance matrix constituted by the

covariance matrix Q and the covariance matrix

ps;
Qp, associated with the entries vector U, . And

J g is the Jacobian matrix deduced from the

evolution equations of the new GPS position.

Qgps 0
c,=| (40)
0 Qu,
and
J = a—)igpsk-#] (41)
g=———
O(xp, Y, 8y,90)
(1 0 -85y -A,;Sy8
o1 oy —A0n)

4.2.2 Bias management

In order to check that the bias has not changed from
an iteration to an another one, it’s necessary for the
GPS position to be contained in the confidence

interval (see Fig. 13) described by the vector X P

and the covariance matrix Q,, . This new

confidence interval is computed from the last X ops

proprioceptive informations (see Section 4.2.).

To test if the GPS position remains within the
confidence interval, the following Mahalanobis
distance is computed:

provided by the GPS as well as the

k+1

e

Fig. 12. Vehicle evolution.

Confidence interval
on vehicle position

Confidence interval on
the new GPS position

GPS position when

O<4—" the bias has changed

GPS position when
the bias is considered
like constant

Fig. 13. Bias variations.

d=(X., - X X

-1 t

gps~ Lgpsis IQepsy 1 (X gps ~ Kgmn) (42)
d <1 means the GPS point is situated inside the
uncertainty ellipsis corresponding to one standard
deviation. The experiments show this condition is
sufficient to insure that the bias has not changed. Then
the bias can be updated. 4 >1 means the bias was
subject to a strong variation. The reinitialization of the
covariance matrix associated with state vector and
bias parameters in the state vector is needed before the
update. For this: Q, will take its initial value ( Qi
see (10)) and covariance between the vehicle attitude
parameters and bias parameters are set to zero. Then
using (6), Q, becomes:

2
x

Oy Oy Oy
o 62 o 0
Q.= ™ 7 );Y . (43)
Oypx Oy Oy
0 Qj,
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Having no knowledge about the new value of the bias,
it is considered as the difference between the estimate
position of the vehicle in the state vector and the new
position provided by the GPS in according with the
confidence interval given by the constructor. So, the
bias can be described by the following equations:

by = Xe — Xgps (a4)
by, =Yk = Yaps

with:
04ty [<Ap s
0<lby, [<Ap.

If the above relation are not respected then &, and

byk are sat to zero.

5. LOCALIZATION RESULTS

In this section we present the experimental results
obtained on an avenue near the middle of Clermont-
Ferrand. This experimental travel presents several
kind of road contexts: 2x2 lanes, 1x1 lane and a traffic
circle (see Fig. 14).

Results are presented in three parts:

» the first one presents the behavior of the system
when the GPS signal is lost,

» the second one describes the localization results
when the bias fluctuates,

e and the last one shows the precision obtained with
this system.

Before the presentation of these results, the
experimental framework is detailed.

5.1. Experimental framework

The tests have been realized using an experimental
vehicle. This is a Citroén Evasion equipped (Fig. 15)
with several devices :

Yim3 T T T i

86800 - v ans s n e U E o I S B b
Avenue Bingen

B8BBID S S S AR

85400 U SIS D S 4
86200 (O A

86000 : oo T T LT |

85800

85600

85400
860000 660500 £6100C 81500 X(m)

Fig. 14. Map of bingen avenue.

Fig. 15. Experimental vehicle used.

Y

Steering
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sSensor
1 i

PIC based PIC based

interface interface

module module

< CAN Bus >
pPC

IEEE 1394 Bus

<

Camera

Fig. 16. Data acquisition architecture.

e a steering angle sensor which is simply a standard
potentiometer coupled with the steering wheel axis,

e a low cost GPS similar to the one used for
commercial vehicle guidance systems,

» a video camera installed inside the car near the rear
view mirror and looking at the road in front of the
vehicle,

# an on boarded PC for sensor data acquisition,
image processing and localization computation.

The data acquisition is managed by a specific
software able to recover the data on several kinds of
interface busses (CAN bus, IEEE 1394 bus) within a
hardware architecture illustrated Fig. 16 and to insert
each one onto a time scale using a dating and
synchronism process of our own which is not
described here.

The time intervals between sensing points is not
constant but as soon as the corresponding data are
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correctly positioned on the time scale this interval is
well known and can be used for the localization.

The position updating is achieved each time a
sensor data arrives with its correct dating, using the
corresponding Kalman filter equation as explained in
the previous sections.

5.2. Behavior when GPS signal is lost

In this first part, we will show the reactions of the
localization system in the case of GPS signal losses.
This situation is rather frequent in urban environments.
In order to show the robustness of our approach, we
have simulated a loss of GPS signal between 155
and 30s in two different cases: with and without
"vision" informations (see Fig. 17).

Fig. 17(a) is the result of the localization without
"vision" information and without loss of GPS signal:
the system provides an approximate trajectory of the
vehicle. This first one passes through all GPS position
because the system is not able to estimate the bias
without "vision" (see Section 2.4.).

Figs. 17(b) and 17(c) are the localization results
without "vision" and with losses of GPS signal going
from 15s to 30s. The longer the loss of GPS signal
is, the higher the difference of the position in
comparison with the result in the first graphic (like
statement in Section 1.1.).

Finally, the Fig. 17(d) shows the localization results
when "vision" is enabled. It can be noticed that
despite the loss of GPS signal, the system provides a
correct position. The vehicle trajectory does not pass
through the GPS positions, because the system is able
to estimate the bias thanks to the "vision" data.

As it’s shown in Fig. 17(d), the use of "vision" data
associated with a numerical map of road network
allows to provide a good estimation of the vehicle
position even if the GPS data are not present. So, this
is very interesting in urban or tunnel situations. If we
assume that map errors are insignificant, the precision
obtained in the estimated localization strongly
depends on the precision of the road-tracker algorithm.

5.3. Bias variations

Now the behavior of the system when the bias
changes suddenly is presented. Fig. 18 (18(a) to 18(f))
show the localization results, positions provided by
the GPS, the estimate of the GPS position and its
confidence interval on the map for each update by
GPS data. Table 2 presents some corresponding
numerical values as well as the value of the
Mahalanobis distance (see Section 2.4) during the
update.

At time f=1, the system provides an estimation

of the vehicle position and a bias estimation called b5,

this one was learned by the system during several
preceding iterations.

Table 2. Numerical results of bias variations.

¢ Measured Estimated | Malahanobis
bias (m) bias (m) Distance

10 243 13711243 |3.760.04

4l 28.11 | 7.53 [ 2.62 | 3.72 | 8924.36

t' 28.09 | 7.54 |1 28.09 | 7.54 | None

) 246 |3.64|27.88 | 7.54 | 8887.61

th 245 |13.63|245 | 3.63{none

B 231 [3.74]2.44 |3.68]0.65
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Fig. 17. Vehicle localization : (a) no signal loss, vision
not available, (b) signal loss during 15s and
vision not available, (c¢) signal loss during
30s and vision not available, (d) signal loss
during 30s and vision available.
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Fig. 18. Bias behavior at different times.

At time ¢=f# a bias variation happens.
Estimations of GPS position is false and the GPS
position is out of the confidence interval
(Mahalanobis distance d =8924.36 >1), this one has
been computed in the meantime of the prediction of
the new GPS position. After the update (at time
t=1t')) we can see that the new estimation of the GPS
position is the same that the GPS position indeed the
bias was re-initialized. Regarding estimation of the
vehicle position, this one has varied only of few
centimeters between # and ¢'|, therefore the update

has no influence on the vehicle position estimations.

At time f=t,, GPS data are skewed again by a
bias close to b, (d =8887.61). We are in the same

situation at time r=¢ et t=t'|. According to the

results obtained at time ¢=¢'5 the system reacts in

the same way, bias is initialized and the update has no
influence on the estimation of the vehicle position.

Finally at time ¢=#; the bias is correctly

estimated, as shown by the Mahalanobis distance
d =0.65. The update is realized without bias re-
initialization.

So, according to these results, the system is
appropriate to manage GPS data uncertainties (change
of visibility of the satellites or multi-path
interferences) and it allows to estimate a good vehicle
position even if the bias is subject to some variations.

5.4. Precision obtained by the system

Initially we present the precision obtained in motor-
way situations (2x2 lanes). Four situations will be
described: the initialization step, a second one where
"vision" information is available, a third one with a
loss of GPS signal and a last situation where all sensor
data are available (Fig. 19). For a better
comprehension, all the results are given in the road
reference frame: lateral position and orientation of the
vehicle on the roadway.
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Fig. 20. Vehicle trajectory in the traffic circle.

Between time /=0 and r=¢, the state is only

updated by GPS data and the prediction by
proprioceptive sensors ("vision" data are not taken
into account). The system allows to know an
approximated position and orientation of the vehicle,
uncertainties on the lateral position and longitudinal
position are about 30m (corresponding to A,

defined 2.2.). Uncertainty of orientation angle ¥ is
about 4 degrees with fluctuation of 1 degree due to
uncertainties on the proprioceptive sensor data.

From time #, to # the update by "vision" data is

available, uncertainties on the lateral position of the
vehicle decreases to 20cm , on the longitudinal
position to 4m and on the orientation angle ¥ to
about 2 degrees.

From time ¢ to t, the loss of the GPS signal

have no influence on the localization results. Rather
high variations on the orientation angle are visible,
they are due to lane change or to a bad recognition of
the road by the "vision" algorithm.

Finally after time #, the localization is refined

while the road-tracker provides good informations.
Now we will show the precision obtained when the
road-tracker algorithm is not able to provide good
information to the localization system. An example of
traffic circle will be described (see Fig. 20). The
experimentation is as follow: after having covered
2km (at time ¢ =1y) the vehicle is localized with a

good precision, it arrives to a traffic circle by the left
lane of a 2x2 lanes way, goes around the traffic circle
and goes out in opposite direction of the 2x2 lanes.
The estimations of the vehicle trajectory and GPS
position are described respectively by dashed layout
and stars.

Attime r=1, and =4 the road tracker makes a

poor estimation of the vehicle attitude involving a
poor localization of the wvehicle in the world.
Afterwards the "vision" algorithm does not provide an
information. The estimated trajectory remains rather

good due to the proprioceptive sensors and regardless
the uncertainty of GPS information.

From time =t to f=t; the road-tracker

algorithm is not able to provide good information in
traffic circle context, therefore "vision" is not
available and only GPS information is used to update
the state vector. The trajectory provided by the system
follows the traffic circle but when the vehicle leaves
this, the estimated position is not on the correct lane
because of the drift of the proprioceptive sensors. The
precision of each parameter decreases according to the
traveled distance.

At time ¢>=¢; "vision" is available again, the

vehicle is positioned on the correct lane and precision
onto the parameters have similar values as at time
= fo .

According to these results, the localization
precision strongly depends on "vision" information. If
road-tracker does not provide any information then
the localization precision decreases but remains higher
than the precision of the GPS alone.

6. CONCLUSION

This article present a low cost method both precise
and robust for vehicle localization in road network.
Taking into account of the bias on the GPS data into
the state vector allows the localization system to be
insensitive to losses of GPS data as well as of
variations due to satellites visibility. Original
association of a vision algorithm able to provide a
precise vehicle localization on the road with a
numerical map of the road network allows the
localization system to obtain a good accuracy
(precision of some 10cm).

As it is shown in the localization results, no
"vehicle on road" hypothesis is taken into account in
the localization process, we plan to deal with this
problem by using a particle filter and information
provided by the numerical map of the road network.
This method should manage the multi-assumptions in
terms of positioning that we can meet in the situations
of 2x2 lanes or in the crossroads. It should avoid the
principal drawbacks of Kalman filter (non-linear
estimation, nonwhite noises). A second part of our
future works is to add a tracking module to the
"vision" algorithm by using the data provided by the
proprioceptive sensors, thanks to this module we hope
to improve road detection, increase the precision of
"vision" information vision and by the same
opportunity improve the vehicle localization. The
overall precision of the localization is at the present
time evaluated by a posteriori variances on the
estimated vehicle attitude. We plan to use a DGPS
system as reference position sensor to compare the
position it provides with the estimated one.
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