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ABSTRACT

Bresson et al. have recently proposed an efficient group key agreement scheme well suited for a wireless network
environment. Although it is claimed that the proposed scheme is provably secure under certain intractability assumptions, we
show in this paper that this claim is unfounded, breaking the allegedly secure scheme in various ways.

Keywords : Group key agreement, key authentication, forward secrecy, known key security, collusion attack, interleaving

attack.

! . Introduction

In many ways, security risks for mobile
computing are similar to those for other
computing platforms. There are the usual
concerns of protecting privileged infor-
mation, authenticating users and devices.
However, the devices strict limitations on
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hardware and software characteristics add
to the challenges. Due to serious resource
constraints on mobile devices, security
solutions targeted for more traditional
networks are often not directly applicable
to wireless networks. In this sense it has
been of particular interest to devise an ef-
ficient protocol for secure wireless com-
munications.

Though secure key distribution is of vi-
tal concern to anyone interested in com-
municating securely over a public net-
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work, the design of key exchange proto-
cols that are secure against an active ad-
versary is not an easy task to do. espe-
cially in a multi-party setting: there is a
long history of protocols for this domain
being proposed and subsequently broken
by some active attacks (e.g., (1-2]). Con-
sequently, key exchange protocols must be
subjected to the strictest scrutiny possible
before they can be deployed into an ad-
versarially controlled network.

The recent work of Bresson et al."”’ pro-
posed a very efficient group key agree-
ment scheme well suited for unbalanced
networks consisting of devices with strict
power consumption restrictions and wire-
less gateways with less stringent res-
trictions. The proposed scheme consists of
three protocols: the setup protocol GKE.
Setup. the remove protocol GKE.Remove,
and the join protocol GKE.Join. The main
GKE.Setup protocol allows a set of mobile
devices (also called clients) and a wireless
gateway (also called server) to agree on a
common secret key called a session key.
To meet the efficiency needs of clients,
the protocol shifts most of computational
burden to the gateway and provides mo-
bile devices with the ability to perform
public-key cryptographic operations off-
line. The other protocols of the scheme al-
low the server to efficiently handle dy-
namic membership changes of clients in
one wireless domain.

In this paper we show that the Bresson
et al.s group key agreement scheme is
completely insecure, presenting various
attacks against the three protocols of the
scheme.

Il . Review of Bresson et al.’s Scheme

Let G be a finite cyclic group of bit
prime order ¢. where [/ is a security pa-

rameter, and let g be an arbitrary gen-
erator of G. Both G and g are known to
all parties in the network. There are
three hash functions & :{0,1}"— (0,1}
Hy:{0,1}"— (0,1} ®, where [, needs not be
equal to I and H,:{0,1}" x G —{0,1}°,
where [/, is the maximal.bit—length of a

counter c¢ used in the scheme.
2.1 Long-Term Key Generation

We denote by S the server and by C
the set of all clients that can participate
in the protocols. Before the setup protocol
is run for the first time, an initialization
phase occurs during which:

1. The server S sets its private/public
keys to be (SKg PKy)= (x,y), where
x€pZ and y=g*.

2. Each client U;=C generates a pair
(SK; PK) of signing/verifying keys
by running the key generation algo-
rithm of a signature scheme.

2.2 The GKE.Setup Protocol

Let G.SC be a set of clients who wish

to establish a session key with the server
S. In the protocol, each client U;=G,

generates an ephemeral Diffie-Hellman
pair (J;i,yi:gz'), which then leads to a se-
cret value a,=g¢"" shared between the cli-
ent U; and the server S. Signatures are
used for authenticating the clients. Let I,
be the set of indices of the clients in G..

The actual protocol executes in two
rounds as follows:

Round 1. Each client U,=G, chooses a

random x;& Z,, and precomputes ¥=g",
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a;=y" and a signature o, of v, under the
signing key SK,. Each client U, then
sends (y; 0, to the server S.

Round 2. For each message (y;0,), the
server S verifies the signature o, using
- PK; and if the verification succeeds, com-
putes the value «;=y/. Then S initializes

the counter ¢ to 0, computes the shared
secret value

K=Hy(cl {a;},_,).

and sends to each client U, the values
cand K, =K® H(clla,).

Key computation. After recovering the
shared secret value K as

K=K ® Hlcla,),

each client U, (and S) computes their se-

ssion key as:

sk=H(KI G.18).
2.3 The GKE.Remove Protocol

Let R be a set of clients leaving an ex-
isting client group G.. Then, the GKE.Re-
move protocol is run to provide the sever
S and the remaining clients with a new
session key sk. After the client group G,
is updated to be G\ R, the protocol pro-

ceeds as follows:

Round 1. The server S increases the
counter ¢ and computes the common se-
cret value

K=Hy(cl{a},_ ).

S then sends to each client U,eG, the
values ¢ and K, =K ® H(cll a;).

Key computation. After receiving the
values ¢ and K;, each client U,eG, first

checks that the new counter is greater
than the old one, and simply recovers the
common secret value K and the session
key sk as follows:

K=K ®H/(clle;) and sk=HKI G S).
2.4 The GKE.Join Protocol

Let 7 be a set of new clients who want
to join an existing client group G,. Then,
the client group G, is updated to be
G.UJ and the GKE.Join protocol is run
to provide S and each client U;eG. with

a new session key sk. The protocol pro-
ceeds as follows:

Round 1. Each new client U;J choo-
ses a random =x;€ %, and precomputes
¥=4’. ;=y” and a signature o, of y; un-
der the signing key SK; Each client
U;=] then sends (y; 0, to the server S.

Round 2. The server S verifies the in-
coming signatures, and if correct., operates
as in the setup protocol, with an in-

creased counter c¢: it computes the shared .
secret value

K=Hcl {ai}iel,)‘

and sends to each client U,eG,. the val-
ues ¢ and K=K®H(clq).
Key computation. Each client U;eG.

already holds the value o=4" and the old
counter value (set to zero for the new
ones). So it first checks that the new
counter is greater than the old one, and
simply recovers the shared secret value K
and the session key sk as follows:
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K=K ®H/(cla,) and sk=HKI G S).

. Attacks on the GKE.Setup Protocol

In this section we show that the GKE.
Setup protocol does not meet the main se-
curity properties: implicit key authentica-
tion, forward secrecy, and known key
security.

3.1 Implicit Key Authentication

The fundamental security property for a
key exchange protocol KEP to achieve is
implicit key authentication, which is de-
fined in the following context“?. Let sk,
be the session key computed and accepted
by U, as a result of protocol KEP, and let

U be the set of the intended participants
of KEP. Then we say that KEP provides
implicit key authentication if each U,eU
is assured that no party U,=U can learn
the key sk; unless helped by a dishonest
U,eU.

To show that the GKE.Setup protocol
does not provide implicit key authentica-
tion, we consider two runs of the protocol
which are executed in an either con-
current or non-concurrent manner. We de-
note by G, and G . the sets of clients
with respect to the first and second runs,
respectively. Assume that the adversary
A participates as a client in the first run
of the protocol (i.e.. AeG,). but is in-
tended to be excluded from the second run
(i.,e., AeG  U{S}). Also assume that two
client sets G. and G, are non-disjoint.
The goal of adversary A is to share the
same key with the participants of the sec-
ond run. To do so. the adversary A gath-

ers some information during the first run
and uses that information to impersonate

some client in the second run. The de-
tailed attack scenario is as follows:

1. In the first run of the protocol, the

adversary A computes the shared se-
cret value K participating as a nor-
mal client. A then obtains Hl(clle)

for all i{=I, by computing
Hlclla,)=K® K,

which can be done without knowing
;. The adversary A4 records Hl(cl

C!L») and ('yi,U,) for all i=1,.

. In the first round of the second run,

the adversary A (pretending to be
U; for some U,eG.NG ) replaces
the message (¥';0°) sent by U; with
(y; 0,) stored in the previous step of

this scenario. Because the server S
thinks that (y; 0,) is from U;, it will
compute the shared secret value K’
as per protocol specification and will
send to client U; the values c¢=0

and

K =K ®Hllad)),

with o computed as o;=y.

. In the second round of the second

run, the adversary A reads K'; which
ig transmitted through an open chan-
nel. Now, from the values K'; and
H(clla) (obtained in the first step of
this scenario), the adversary A can
recover the shared secret value K
as follows:

K =K ,©Hl(cla.

This equation holds, since «;=¢; and
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thus H(clle))=H(clie;). Finally, the adver-
sary A can share the same session key
sk =H(K' | G 1S with all the partic-

ipants of the second run except U;.

Consequently, there seems to be little
reason to expect that the GKE.Setup pro-
tocol provides implicit key authentication,
as soon as the adversary participates as a
client in a protocol execution and is in-
tended to be excluded from another proto-
col execution with a non-disjoint set of
clients.

3.2 Forward Secrecy

The perfect forward secrecy property
says that earlier session keys are pro-
tected against loss of some underlying in-
formation at the present time. As noted
by the authors themselves, the GKE.Setup
protocol does not provide perfect forward
secrecy. as soon as the long-term private
key x of the server is leaked, all the past
session keys can be recovered since every
a; can easily be computed from y; and =x.

However, it is claimed by the authors
that the protocol achieves partial forward
secrecy. disclosure of the private signing
keys of clients does not reveal anything
about previous session keys. In support of
this claim, they argue that the long-term
keys of the clients are used for implicit
authentication only. and not for hiding
the session key. But. this claim is flawed.
The attack below shows that if some cli-
ent's signing key is ever revealed. then
any previous session key can be computed
by an active adversary. As a simple sce-
nario, we consider two runs of the proto-
col with the first one being completed be-
fore the second one begins. Similarly as
before, we denote the client groups with

respect to the first and second runs of the
protocol by G. and G'. respectively. As-
sume that the adversary A wants to re-
cover the session key established in the
first run of the protocol in which she has
not participated. The attack is launched
as follows:

1. In the first run of the protocol, the
adversary A eavesdrops on the ses-
sion recording the transmitted mes-
sages (v; 0, and

K=K H/(la)

for some iel,.

2. Now, the adversary A participates
as a client in the second run of the
protocol. Because we consider for-
ward secrecy, we will assume that
the private signing key SK; of some
other client U;eG’, is exposed to A.

3. In the first round of the second run,
the adversary A proceeds much like
a normal client by sending the mess-
age (¥ 40, to the server. In the
same time period, the adversary A
(pretending to be the client U,) re-
places the message (y';¢";) sent by
U; with (y;0"), where o; is the
signature of y; (stored in the first
step) under the private key SK;. Note

that the adversary A can sign any
message of its choice on behalf of U;.

4. Because the verification of signature
o, will succeed, the server S will

compute «; as

’

— L
a =y

and the shared secret value K as
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per protocol specification. Then S
will send to client U; the values

¢=0 and
K ;=K ®Hlld,).

5. Now, in the second round of the sec-
ond run, the adversary A should be
able to compute the shared secret
value K since it participates as a
group member. From K and K';, the

adversary A can recover Hlcla)) as
follows:

Hclld)=K & K'; .

6. With this information Hl(cla;), the
adversary A can recover the shared
secret value K of the first run of the
protocol as follows:

K=K ® H/lcl o),

since o=d¢; and thus Hlcla)=
H(cllo';). Finally, A can compute
the session key sk=H(KI G.I1S) of

the first run.

Therefore, once an underlying key is ex-
posed, there is nothing to prevent an ad-
versary with the key from accessing priv-
ileged information communicated in ear-
lier sessions.

3.3 Known Key Security

A protocol is said to provide known key
security if compromising some session
keys does not allow a passive adversary
to compromise keys of other sessions, nor
an active adversary to impersonate one of
the protocol parties. In this subsection,

we will extend our security analysis of the
protocol by presenting an active known key
attack. We will assume two sessions of the
protocol with the same participants. Then
the following attack is possible:

1. In the first run of the protocol, the
adversary A eavesdrops on the ses-
sion recording the transmitted mess-
ages (y;0) and (¢, K) for all iel,.
Since we consider known key attack,
we will assume that the session key
K of this run is revealed to A.

2. In the first round of the second run,
the adversary A replaces the mes-
sage (»;0",) sent by each U, with
(¥; 0, obtained in the previous step.

3. Since all the /s are replayed., the
server S will compute the same ses-
sion key as computed in the first run
of the protocol.

Therefore, at the end of this scenario,
the server S will share with the adver-
sary A the key that has been shared by
all participants of the first session of the
protocol.

V. Collusion Attack on the GKE.Remove
Protocol

Let A, and A, denote two colluding ad-~
versaries. First, consider two existing ses-
sions of the GKE.Setup protocol with the
client groups G, (A, A;2G.) and G,
(A, A,eG ), respectively. Now, assume
that the adversaries A, and A, move
from G . to G, and thus two new ses-

sions of the protocols are opened: in the
first session, the GKE.Join protocol is
executed with the client group G.=G.U
{4, 4,}; while in the second session, the
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GKE.Remove protocol is executed with the
client group G .=G \N{A;A,;}. We also
assume that G.NG #@. Then, the fol-

lowing attack on the second session,
where the GKE.Remove protocol is exe-
cuted, is possible:

1. Before moving from G', to G, in the
second run of the setup protocol, one
of two adversaries. say A,, records
the message (y',0’,) sent to S by
some client U,eG.NG ..

2. Now, after moving from G'. to G,
the adversaries A, and A, partic-

ipate in the run of the join protocol.
In the first round of this run, the
adversary A, sends to S the mess-

age (y4,0,) exactly following the pro-
tocol specification. In the same time
period, the adversary A, sgenerates
the signature o, of », (obtained in
the previous step of this scenario)
under her signing key SK,, and
sends the message (y'k,UAz) to S. In
the second round, S operates as
specified in the protocol, verifying
the received signatures, increasing
the counter ¢, computing e, . e, =y}
and K, and sending out the keying
material to the clients in G..

3. Now that the two colluding adversa-
ries A, and A, receive from S the

messages (¢K,) and (¢.K,) respec-

tively, they can easily obtain the val-
ue Hlclla,) without knowing a,.

The adversaries first compute K as

K=KA|EBHI(CH O‘A.)

using a,, and then, from K, recover

Hclla,) as

Hlcla,)=KSK, .

4. Now, in the run of the GKE.Remove
protocol with the client group G'.
(U,eG ), the adversaries eavesdrop
on the message (c¢’,K',) sent by S
to the client U,. Meanwhile, after
receiving the messages from S, the
clients in G, operates as specified in

the protocol, checking that the new
counter is greater than the old one,
recovering the common secret value
K, computing the session key sk as:

sk =HK' | &', 8)

But, this session key st can be also
obtained by the adversaries. Since
c=c¢ and a,=d}, and thus H(cl
a,)=H(c Ia'y), the adversaries can

compute K as

K=K ,®H(clay,)

using #H(clla,) obtained in the run of

the join protocol, and hence the ses-
sion key sk'.

Consequently, all the users taking part
in the remove protocol share a session key
Wlth Al and Az.

V. Interleaving Attack on the GKE.Join
Protocol

We now show that the GKE.Join proto-
col does not satisfy implicit key au-
thentication. Let's assume that a set of
new clients, J, wants to join two existing
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sessions of the GKE.Setup protocol with
the client groups G, (AeG,) and G,
(AeG ),

that the clients in J are permitted to

respectively. Assume further

join, and thus two concurrent runs of
the GKE.Join protocol are opened with
the new client groups G.=GJMAJJ and
G .= G MJJ. respectively. Then, an inter-
leaving attack can be launched against
the clients in J<G',. As can be observed
in the following attack, increasing the
counter (in the second round of the
GKE.Join protocol) does not play any role
to prevent relaying messages between two
sessions from leading to a successful
attack.

1. In the first round of the second run,
the adversary intercepts all the mes-
sages (¥';0°) sent to S by the cli-
ents in JCG' .

2. In the first round of the first run,
the adversary A replaces the mes-
sage (y;0;) sent to S by each client
U, in JCG, with (¥ ¢ ;) obtained
in the previous step of this scenario.

3. In the second round of the first run,
the server S verifies all the received
signatures. All these signature ver-
ifications should be passed since they
have been honestly generated by the
clients themselves. After the ver-
ifications are complete, S operates as
specified in the protocol, computing
o; as o;=y; for each new client U; in
JCG,. and increasing the counter c.
The server S then sends to each cli-
ent U; in G, the values ¢ and

K=K®&Hlcla),

and to the adversary 4 the values ¢ and

K, =K®dHlclla,).

Now, the adversary A records all
the messages sent by S to the other
clients while recovering the shared
secret value K from K,.

4. In the second round of the second
run, the adversary A (pretending to
be the server S) sends to each client
U; in JCG', the message (¢, K;) ob-
tained in the second round of the
first run. After receiving this mes-
sage from A, each client in JCG',
first checks that the newly received
counter is greater than the old one:
this verification will succeed since
the server S increased the counter
for the first run of the protocol.
Then, each client in JCG'. recovers

K from K; and compute the session

key as:

skl = H(KW G, S).

At the end of this attack, the clients in
JCG . believe that they have established

a secure session with S sharing a secret
key sk, while in fact they have shared it
with A.

V. Improvement

To frustrate the attacks, we must some-
how prevent information obtained in some
sessions from being used for a successful
attack on any other session. At first
glance, it seems like that the weakness of
the scheme is solely because the counter
¢ is always initialized to the same value
0 in the setup protocol. However, we note
that increasing the counter monotonically
with each new session of the protocol is
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not enough by itself to solve the security
problems. Indeed, with this modification
alone, the protocol can still be broken by
an interleaving attack in a scenario where
two sessions of the protocol are executed
concurrently: note that the interleaving
attack described in the previous section
does not require that two counter values
used in two concurrent sessions be the
same. But fortunately, it turned out that
we can easily solve the security problems
without compromising the efficiency of the
original scheme, by modifying the counter
management scheme and the computation
of K; to the following:

1. During the initialization phase, the
server S and all clients in C initi-
alize their own counter ¢ to 0.

2. The server S increases the counter ¢
monotonically with each new session
of the protocols, and computes each
K; as

K=K®H(clol G1S).

3. Upon receiving the message (c,K])
from the server S, each client U €G.
checks that the newly received coun-
ter is greater than the old one, re-
covers the shared secret value K as

K=K & Hiclol GIS),

and updates its counter to the new
value.

Our improved version is as efficient as
the original scheme, meeting the efficiency
needs of clients: it provides low-power
mobile devices with the ability to perform
all of the public-key cryptographic oper-
ations off-line.

vi. Conclusion

The recent work of Bresson et al.”¥ pro-
posed an efficient group key agreement
scheme which consists of three protocols,
the setup protocol GKE.Setup, the remove
protocol GKE.Remove, and the join proto-
col GKE.Join. But unfortunately, this gro-
up key agreement scheme is completely
insecure since:

1. The GKE.Setup protocol does not meet
the main security properties, namely,
implicit key authentication, forward
secrecy. and known key security.

2. The GKE.Remove protocol can be
broken by a collusion attack in a sce-
nario where it is executed concur-
rently with the GKE.Join protocol.

3. The GKE.Join protocol is also vulner-
able to an interleaving attack.
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