DOI QR코드

DOI QR Code

EFFECTS OF TRANSFORMATION CAPACITY ON COMETABOLIC DEGRADATION OF TRICHLOROETHENE


Abstract

The effects of transformation capacity on cometabolic degradation of trichloroethene (TCE) were evaluated using TCE-degrading actinomycetes pure and mixed culture under various culture conditions. The TCE transformation capacity of the actinomycetes enrichment culture in a batch test with phenol addition was 1.0 mg of TCE/mg of volatile suspended solids (VSS). The resting cell TCE transformation capacity of the actinomycetes pure culture cell was 0.75 mg TCE/mg VSS, which increased to 2.0 mg TCE/mg VSS when phenol was added as an external substrate. When the pure culture had an internal substrate in the form of poly-β-hydroxybutyrate (PHB) at 19% of the cell mass, the resting cell TCE transformation capacity increased from 0.47 to 0.6 mg TCE/mg VSS. The presence of PHB increased transformation capacity by 57%, whereas, the addition of phenol caused more than two fold increase in transformation capacity. The actinomycetes culture showed the highest transformation capacity.

Keywords

References

  1. Vogel, T. M. and McCarty, P. L., 'Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions,' Appl. Environ. Microbiol., 49(5), 1080-1083 (1985)
  2. Fogel, M. M., Taddeo, A. R. and Fogel, S., 'Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture,' Appl. Environ. Microbiol., 51(4), 720-724 (1986)
  3. Mayer, K. P., Grbic-Galic, D., Semprini, L. and McCarty, P. L., 'Degradation of trichloroethylene by methanotrophic bacteria in a laboratory column of saturated aquifer material,' Water Sci. Technol., 20(11/12),175-178 (1988)
  4. Nelson, M. J. K., Montgomery, S. O., Neill, E. J. O., and Pritchard, P. H., 'Aerobic metabolism of trichloroethylene by a bacterial isolate,' Appl. Environ. Microbiol., 52(2), 383-384 (1986)
  5. Wackett, L. P. and Gibson, D. T., 'Degradation of trichloroethylene by toluene dioxygenase in whole cell studies with Pseudomonas putida F1,' Appl. Environ. Microbiol., 54, 1703-1708 (1988)
  6. Harker, A. R. and Kim, Y., 'Trichloroethylene degradation by two independent aromatic-degrading pathways in Alcaligenes eutrophus JMP134,' Appl. Environ. Microbiol., 56(4), 1179-1181 (1990)
  7. Nelson, M. J., Montgomery, S. O., Mahaffey, W. R. and Pritchard, P. H., 'Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway,' Appl. Environ. Microbiol., 53(5), 949-954 (1987)
  8. Arciero, D., Vannelli, T., Logan, M. and Hooper, A. B., 'Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea,' Biochem. Biophys. Res. commun., 159(2), 640-643 (1989) https://doi.org/10.1016/0006-291X(89)90042-9
  9. Vannelli, T., Logan, M., Arciero, D. M. and Hooper, A. B., 'Degradation of halogenated aliphatic compounds by the ammonia- oxidizing bacterium Nitrosomonas europaea,' Appl. Environ. Microbiol., 56(4), 1169-1171 (1990)
  10. Vanderberg, L. A. and Perry, J. J., 'Deha-logenation by Mycobacterium vaccae JOB-5: role of the propane monooxygenase,' Can. J. Microbiol, 40(3), 169-172 (1994) https://doi.org/10.1139/m94-029
  11. Wackett, L. P., Brusseau, G. A., Householder, S. R. and Hanson, R. S., 'Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria,' Appl. Environ. Microbiol., 55(11), 2960-2964 (1989)
  12. Perriello, F. A., and Simkins, S., 'Biotransformation of trichloroethylene using butaneoxidizing bacteria,' J. Soil Contam., 8(1), 117-129 (1999) https://doi.org/10.1080/10588339991339261
  13. Ewers, J., Freier-Schroder, D. and Knackmuss, H. J., 'Selection of trichloroethene (TCE) degrading bacteria that resist inactivation by TCE,' Arch Microbiol, 154(4), 410-413 (1990) https://doi.org/10.1007/BF00276540
  14. Dabrock, B., Riedel, J., Bertram, J. and Gottschalk, G., 'Isopropylbenzene (cumene) a new substrate for the isolation of trichloroethene- degrading bacteria,' Arch. Microbiol., 158(1), 9-13 (1992) https://doi.org/10.1007/BF00249058
  15. Fox, B. G., Borneman, J. G., Wackett, L. P. and Lipscomb, J. D., 'Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications,' Biochemistry, 29(27), 6419-6427 (1990) https://doi.org/10.1021/bi00479a013
  16. Alvarez-Cohen, L. and McCarty, P. L., 'Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotrophic culture,' Appl. Environ. Microbiol., 57(1), 228-235 (1991)
  17. Chu, K. H. and AlvarezCohen, L., 'Trichloroethylene degradation by methane-oxidizing cultures grown with various nitrogen sources,' Water Environ. Res., 68(1), 76-82 (1996) https://doi.org/10.2175/106143096X127235
  18. Shah, N. N., Hanna, M. L. and Taylor, R. T., 'Batch cultivation of Methylosinus trichosporium OB3b. V. Characterization of poly-beta-hydroxybutyrate production under methane-dependent growth conditions,' Biotechnol. Bioeng., 49(2), 161-171 (1996) https://doi.org/10.1002/(SICI)1097-0290(19960120)49:2<161::AID-BIT5>3.0.CO;2-O
  19. Semprini, L., 'Stragegies for the aerobic co-metabolism of chlorinated solvents,' Curr. Opin. Biotechnol., 8, 296-308 (1997) https://doi.org/10.1016/S0958-1669(97)80007-9
  20. Hopkins, G. D., Munakata, J., Semprini, L. and McCarty, P. L., 'Trichloroethylene concentration effects on pilot field-scale in-situ groundwater bioremediation by phenol-oxidizing microorganisms,' Environ. Sci. Technol., 27(12), 2542-2547 (1993) https://doi.org/10.1021/es00048a035
  21. Walter, G. A., Strand, S. E., Herwig, R. P., Treat, T. P. and Stensel, H. D., 'Trichloroethylene and methane feeding strategies to sustain degradation by methanotrophic enri-chments,' Water Environ. Res., 69(6), 1066-1074 (1997) https://doi.org/10.2175/106143097X125786
  22. Lee, S.-B., 'Biodegradation of chlorinated ethenes by Pseudonocardia chlorethenivorans SL-1,' Ph.D. thesis, University of Washington, Seattle, (2002)
  23. Lee, S.-B., Strand, S. E. and Stensel, H. D., 'Sustained degradation of trichloroethylene in a suspended growth gas treatment reactor by an actinomycetes enrichment,' Environ Sci Technol, 34, 3261-3268 (2000) https://doi.org/10.1021/es9907515
  24. Lee, S.-B., Strand, S. E. and Stensel, H. D. 'Cometabolic degradation of chlorinated solvent contaminants by actinomycetes,' The second international conference on remediation of chlorinated and recalcitrant compounds, Monterey, California, 455-460 (Year)
  25. Braunegg, G., Sonnleitner, B. and Lafferty, R. M., 'A rapid gas chromatographic method for the determination of poly-b-hydroxybutyric acid in microbial biomass,' European J. Appl. Microb iol. Biotechnol., 6, 29-37 (1978) https://doi.org/10.1007/BF00500854
  26. Chang, H. L. and Alvarez-Cohen, L., 'Biodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methaneoxidizing cultures,' Appl. Environ. Microbiol., 62(9), 3371-3377 (1996)
  27. Chang, H. L. and Alvarez-Cohen, L., 'Twostage methanotrophic bioreactor for the treatment of chlorinated organic wastewater,' Water Res., 31(8), 2026-2036 (1997) https://doi.org/10.1016/S0043-1354(97)00020-1
  28. Chang, H. L. and Alvarez-Cohen, L., 'Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol,' Biotechnol. Bioeng., 45(5), 440-449 (1995) https://doi.org/10.1002/bit.260450509
  29. Henry, S. M. and Grbic-Galic, D., 'Influence of endogenous and exogenous electron donors and trichloroethylene oxidation toxicity on trichloroethylene oxidation by methanotrophic cultures from a groundwater aquifer,' Appl. Environ. Microbiol., 57(1), 236-244 (1991)