Cell Age Optimization for Hydrogen Production Induced by Sulfur Deprivation Using a Green Alga Chlamydomonas reinhardtii UTEX 90

  • KIM , JUN-PYO (Department of Chemical Engineering, Sungkyunkwan University) ;
  • KANG, CHANG-DUK (School of Chemical Engineering, Seoul National University) ;
  • SIM, SANG-JUN (Department of Chemical Engineering, Sungkyunkwan University) ;
  • KIM, MI-SUN (Biomass Research Team, Korea Institute of Energy Research) ;
  • PARK, TAI-HYUN (School of Chemical Engineering, Seoul National University) ;
  • LEE, DONG-HYUN (Department of Chemical Engineering, Sungkyunkwan University) ;
  • KIM, DUK-JOON (Department of Chemical Engineering, Sungkyunkwan University) ;
  • KIM, JI-HEUNG (Department of Chemical Engineering, Sungkyunkwan University) ;
  • LEE, YOUNG-KWAN (Department of Chemical Engineering, Sungkyunkwan University) ;
  • PAK, DAE-WON (Water Environment and Remediation Research Center, Korea Institute of Science and Technology)
  • Published : 2005.02.01

Abstract

Under sulfur deprived conditions, PS II and photosynthetic $O_2$ evolution by Chlamydomonas reinhardtii UTEX 90 are inactivated, resulting in shift from aerobic to anaerobic condition. This is followed by hydrogen production catalyzed by hydrogenase. We hypothesized that the photosynthetic capacity and the accumulation of endogenous substrates such as starch for hydrogen production might be different according to cell age. Accordingly, we investigated (a) the relationships between hydrogen production, induction time of sulfur deprivation, increase of chlorophyll after sulfur deprivation, and residual PS II activity, and (b) the effect of initial cell density upon sulfur deprivation. The maximum production volume of hydrogen was 151 ml $H_2$/l with 0.91 g/l of cell density in the late-exponential phase. We suggest that the effects of induction time and initial cell density at sulfur deprivation on hydrogen production, up to an optimal concentration, are due to an increase of chlorophyll under sulfur deprivation.

Keywords

References

  1. Das, D. and V. Nejat. 2001. Hydrogen production by biological processes: A survey of literature. Int. J. Hydrogen Energy 26: 13- 28 https://doi.org/10.1016/S0360-3199(00)00058-6
  2. Gaffron, H. and J. Rubin. 1942. Fermentative and photochemical production of hydrogen in algae. J. Gen. Physiol. 26: 219- 240 https://doi.org/10.1085/jgp.26.2.219
  3. Ghirardi, M. L., L. Zhang, J. W. Lee, T. Flynn, M. Seibert, E. Greenbaum, and A. Melis. 2000. Microalgae: A green source of renewable $H_2$. Trends Biotechnol. 18: 506- 511 https://doi.org/10.1016/S0167-7799(00)01511-0
  4. Harris, E. H. 1989. The Chlamydomonas Sourcebook, pp. 607- 608. Academic Press, Inc., San Diego, California, U.S.A.
  5. Hase, E., Y. Morimura, S. Mihara, and H. Tamiya. 1958. The role of sulfur in the cell division of Chlorella. Arch. Mikrobiol. 31: 87- 95 https://doi.org/10.1007/BF00409966
  6. Hirokawa, T., M. Hata, and H. Taketa. 1982. Correlation between the starch level and the rate of starch synthesis during the development cycle of Chlorella ellipsoidea. Plant Cell Physiol. 23: 813- 820
  7. Hopkins, W. G. and N. P. A. Winer. 2004. Introduction to Plant Physiology. 3rd Ed. pp. 63- 166. John Wiley & Sons, Inc., Hoboken, New Jersey, U.S.A.
  8. Kim, J. R, Y. K. Oh. Y. J. Yoon, E. Y. Lee, and S. H. Park. 2003. Oxygen sensitivity of carbon monoxide-dependent hydrogen production activity in Citrohacter sp. J. Microbiol, Biotechnol. 13: 717-724
  9. Kosourov, S., A. Tsygankov, M. Seibert, and M. L. Ghirardi. 2002. Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters. Biotechnol. Bioeng. 78: 731-740 https://doi.org/10.1002/bit.10254
  10. Lee, J. H., J. S. Lee, C. S. Shin, S. C. Park, and S. W. Kim. 2000. Effects of NO and $SO_2$ on growth of highly-$CO_2$-tolerant microalgae. J. Microbiol. Biotechnol. 10: 338- 343
  11. Lee, K. Y. and C. K. Lee. 2002. Nitrogen removal from wastewaters by microalgae without consuming organic carbon sources. J. Microbiol. Biotechnol. 12: 979- 986
  12. Melis, A. 2002. Green alga hydrogen production: Progress, challenges and prospects. Int. J. Hydrogen Energy 27: 1217-1228 https://doi.org/10.1016/S0360-3199(02)00110-6
  13. Melis, A., L. Zhang, M. Forestier, M. L. Ghirardi, and M. Seibert. 2000. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 122: 127- 135 https://doi.org/10.1104/pp.122.1.127
  14. Pandey, V. and L. C. Rai. 2002. Interactive effects of UV-B and pesticides on photosynthesis and nitrogen fixation of Anabaena doliolum. J. Microbiol. Biotechnol. 12: 423- 430
  15. Rai, L. C. H. D. Kumar, F. H. Mohn, and C. J. Soeder. 2000. Services of algae to the environment. J. Microbiol. Biotechnol. 10: 119- 136
  16. Tsygankov, A., S. Kosourov, M. Seibert, and M. L. Ghirardi. 2002. Hydrogen photoproduction under continuous illumination by sulfur-deprived, synchronous Chlamydomonas reinhardtii cultures. Int. J. Hydrogen Energy 27: 1239- 1244 https://doi.org/10.1016/S0360-3199(02)00108-8
  17. Wykoff, D. D., J. P. Davies, A. Melis, and A. R. Grossman. 1998. The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol. 117: 129- 139 https://doi.org/10.1104/pp.117.1.129
  18. Zhang, L., T. Happe, and A Melis. 2002. Biochemical and morphological characterization of sulfur-deprived and $H_{2}-producing$ Chlamydomonas reinhardtii (green alga). Planta 214: 552- 561 https://doi.org/10.1007/s004250100660