Short-Chain-Length Polyhydroxyalkanoates: Synthesis in Metabolically Engineered Escherichia coli and Medical Applications

  • PARK, SI-JAE (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering and BioProcess Engineering Research Center) ;
  • CHOI, JONG-IL (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering and BioProcess Engineering Research Center) ;
  • LEE, SANG-YUP (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering and BioProcess Engineering Research Center)
  • Published : 2005.02.01

Abstract

Polyhydroxyalkanoates (PHAs) are homo or hetero polyesters of (R)-hydroxyalkanoates accumulated in various microorganisms under growth-limiting condition in the presence of excess carbon source. They have been suggested as biodegradable substitutes for chemically synthesized polymers. Recombinant Escherichia coli is one of the promising host strains for the economical production of PHAs, and has been extensively investigated for the process development. The heterologous PHA biosynthetic pathways have been established through the metabolic engineering and inherent metabolic pathways of E. coli have been redirected to supply PHA precursors. Fermentation strategies for cultivating these recombinant E. coli strains have also been developed for the efficient production of PHAs. Nowadays, short-chain-length (SCL) PHAs are being re-invited due to its improved mechanical properties and possible applications in the biomedical area. In this article, recent advances in the development of metabolically engineered E. coli strains for the enhanced production of SCL-PHAs are reviewed. Also, medical applications of SCL-PHAs are discussed.

Keywords

References

  1. Adams, J. H., G. Irving, J. H. Koeslag, and J. D. Lochner. 1987. Beta-adrenergic blockade restores glucoses antiketogenic activity after exercise in carbohydrate-depleted athletes. J. Physiol. Lond. 386: 439- 454 https://doi.org/10.1113/jphysiol.1987.sp016543
  2. Akhtar S. and C. W. Pouton. 1996. Biosynthetic polyhydroxyalkanoates and their potential in drug delivery. Adv. Drug Deliv. Rev. 18: 133- 162 https://doi.org/10.1016/0169-409X(95)00092-L
  3. Aldor, I. and J. D. Keasling. 2001. Metabolic engineering of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) compositi on in recombinant Salmonella enterica serovar typhirnurium. Biotechnol. Bioeng. 76: 108-114 https://doi.org/10.1002/bit.1150
  4. Anderson, A. J. and E. A. Dawes. 1990. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450- 472
  5. Aoyagi, Y., Y. Doi, and T. Iwata. 2003. Mechanical properties and highly ordered structure of ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate] films: Effect of annealing and two-step drawing. Poly. Degrad. Stabil. 79: 209-216. https://doi.org/10.1016/S0141-3910(02)00273-2
  6. Brandl, H., E. J. Knee, R. C. Fuller, R. A. Gross, and R. W. Renz. 1989. Ability of the phototrophic bacterium Rhodospirillum rubum to produce various poly($\beta-hydroxyalkanoates$): Potential sources for biodegradable polyester. Int. J. Biol. Macromol. 11: 49- 55 https://doi.org/10.1016/0141-8130(89)90040-8
  7. Brophy, M. R. and P. B. Deasy. 1986 In vitro and in vivo studies on biodegradable polyester microparticles containing sulphamethiazole. Int. J. Pharm. 29: 223- 231 https://doi.org/10.1016/0378-5173(86)90119-5
  8. Choi, J. and S. Y. Lee. 1997. Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioprocess Eng. 17: 335- 342 https://doi.org/10.1007/s004490050394
  9. Choi, J. and S. Y. Lee. 1999. Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl. Microbiol. Biotechnol. 51: 13- 21 https://doi.org/10.1007/s002530051357
  10. Choi, J. and S. Y. Lee. 1999. High-level production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli. Appl. Environ. Microbiol. 65: 4363- 4368
  11. Choi. J. and S. Y Lee. 2000. Economic consideration in the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by bacterial fermentation. Appl. Microbiol. Biotechnol. 53: 646-649 https://doi.org/10.1007/s002530000326
  12. Choi, J., S. Y. Lee, and K. Han. 1998. Cloning of the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes and use of these genes for enhanced production of poly(3-hydroxybutyrate) in Escherichia coli. Appl. Environ. Microbiol. 64: 4897- 4903
  13. Deng, Y., K. Zhao, X. Zhang, P. Hu, and G. Q. Chen. 2002. Study on the three-dimensional proliferation of rabbit articular cartilage-derived chondrocytes on polyhydroxyalkanoate scaffolds. Biomaterials 23: 4049- 4056 https://doi.org/10.1016/S0142-9612(02)00136-9
  14. Doi, Y. 1990. Microbial Polyesters. VCH, New York, U.S.A
  15. Doi, Y., Y. Janesawa, M. Kunioka, and T. Saito. 1990. Biodegradation of microbial copolyesters: Poly(3- hydroxybutyrate-co-3-hydroxyvalerate) and poly(3- hydroxybutyrate-co-4-hydroxybutyrate ). Macromolecules 23: 26- 31 https://doi.org/10.1021/ma00203a006
  16. Doi, Y., S. Kitamura, and H. Abe. 1995. Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28: 4822- 4828 https://doi.org/10.1021/ma00118a007
  17. Han, M. J., S. S. Yoon, and S. Y. Lee. 2001. Proteome analysis of metabolically engineered Escherichia coli producing poly(3-hydroxybutyrate). J. Bacteriol. 183: 301- 308 https://doi.org/10.1128/JB.183.1.301-308.2001
  18. Haywood, G. W., A. J. Anderson, G. A. Williams, E. A. Dawes, and D. F. Ewing. 1991. Accumulation of a poly(hydroxyalkanoate) copolymer containing primarily 3-hydroxy valerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126. Int. J. Biol. Macromol. 13: 83- 87 https://doi.org/10.1016/0141-8130(91)90053-W
  19. Hein, S., B. Sohling, G. Gottschalk, and A. Steinbtichel. 1997. Biosynthesis of poly( 4-hydroxybutyric acid) by recombinant strains of Escherichia coli. FEMS Microbiol. Lett. 153: 411-418 https://doi.org/10.1016/S0378-1097(97)00282-6
  20. Hong, S. H., S. J. Park, S. Y. Moon, J. P. Park, and S. Y Lee. 2003. In silico prediction and validation of the importance of Entner-Doudorff pathway in poly(3-hydroxybutyrate) production by metabolically engineered Escherichia coli. Biotechnol. Bioeng. 83: 854- 863 https://doi.org/10.1002/bit.10733
  21. Iwata, T., K. Tsunoda, Y. Aoyagi, S. Kusaka, N. Yoriyuki, and Y. Doi. 2003. Mechanical properties of uniaxially colddrawn films of poly[(R)-3-hydroxybutyrate]. Poly. Degrad. Stabil. 79: 217-224. https://doi.org/10.1016/S0141-3910(02)00274-4
  22. Kato, M., H. J. Bao, C. K. Kang, T. Fukui, and Y. Doi. 1996. Production of a novel copolyester of 3-hydroxybutyric acids and medium-chain-Iength 3-hydroxyalkanoic acids by Pseudomonas sp. 61-3 from sugars. Appl. Microbiol. Biotechnol. 45: 363- 370
  23. Kim, D. Y, Y. B. Kim, and Y. H. Rhee. 2002. Cometabolic production of poly(3-hydroxyalkanoates) containing carboncarbon double and triple bonds by Pseudomonas oleovorans. J. Microbiol. Biotechnol. 12: 518- 521
  24. Kobayashi, G., T. Shiotani, Y. Shima, and Y. Doi. 1994. Biosynthesis and characterization of poly(3-hydroxybutyrateco-3-hydroxyhexanoate) from oils and fats by Aeromonas sp. OL-338 and Aeromonas sp. FA440, pp. 410-416. In Y. Doi, K. Fukuda (eds.), Biodegradable Plastics and Polymers. Elsevier, Amsterdam
  25. Kusaka, S., H. Abe, S. Y. Lee, and Y. Doi. 1997. Molecular mass of poly[(R)-3-hydroxybutyric acid] produced in a recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 47: 140-143. https://doi.org/10.1007/s002530050902
  26. Kusaka, S., T. Iwata, and Y. Doi. 1998. Microbial synthesis and physical properties of ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate]. J. Macromol. Sci. Pure Appl. Chem. A35: 319-335.
  27. Kusaka, S., T. Iwata, and Y. Doi. 1999. Properties and biodegradability of ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate] produced by a recombinant Escerichia coli. Int. J. Biol. Macromol. 25: 87-94. https://doi.org/10.1016/S0141-8130(99)00019-7
  28. Lee, I. Y., M. K. Kim, Y. H. Park, and S. Y. Lee. 1996. Regulatory effects of cellular nicotinamide nucleotide and enzyme activities on poly(3-hydroxybutyrate) synthesis in recombinant Escherichia coli. Biotechnol. Bioeng. 52: 707-712 https://doi.org/10.1002/(SICI)1097-0290(19961220)52:6<707::AID-BIT8>3.0.CO;2-S
  29. Lee, S. H., D. H. Oh, W. S. Ahn, Y. Lee, J. Choi, and S. Y. Lee. 2000. Production of poly(3-hydroxybutyrateco-3-hydroxyhexanoate) by high-cell-density cultivation of Aeromonas hydrophila. Biotechnol. Bioeng. 67: 240- 244 https://doi.org/10.1002/(SICI)1097-0290(20000120)67:2<240::AID-BIT14>3.0.CO;2-F
  30. Lee, S. Y. 1996. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49: 1- 14 https://doi.org/10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.0.CO;2-P
  31. Lee, S. Y. 1996. Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol. 14: 431- 438 https://doi.org/10.1016/0167-7799(96)10061-5
  32. Lee, S. Y. and J. Choi. 2001. Production of microbial polyester by fermentation of recombinant microorganisms. Adv. Biochem. Eng. Biotechnol. 71: 183- 207 https://doi.org/10.1007/3-540-40021-4_6
  33. Lee, S. Y., J. Choi, K. Han, and J. Y. Song. 1999. Removal of endotoxin during purification of poly(3-hydroxybutyrate) from gram-negative bacteria. Appl. Environ. Microbiol. 65: 2762- 2764
  34. Lee, S. Y., K. M. Lee, H. N. Chang, and A. Steinbtichel. 1994. Comparison of Escherichia coli strains for synthesis and accumulation of poly-(3-hydroxybutyric acid), and morphological changes. Biotechnol. Bioeng. 44: 1337-1347 https://doi.org/10.1002/bit.260441110
  35. Lee, S. Y., Y. K. Lee, and H. N. Chang. 1995. Stimulatory effects of amino acids and oleic acid on poly(3-hydroxybutyric acid) synthesis by recombinant Escherichia coli. J. Ferment. Bioeng. 79: 177-180 https://doi.org/10.1016/0922-338X(95)94089-A
  36. Lee, S. Y. and S. J. Park. 2002. Fermentative production of SCL-PHAs, pp. 263- 290. In Y. Doi and A. Steinbtichel (eds.), Biopolymers vol. 3a. Wiley-VCH, Weinheim
  37. Liebergesell, M., E. Hustede, A. Timm, A. Steinbuchel, R. C. Fuller, R. W. Lenz, and H. G. Schlegel. 1991. Formation of poly(3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria. Arch. Microbiol. 155: 415- 421 https://doi.org/10.1007/BF00244955
  38. Liu, S. J. and A. Steinbuchel. 2000. A novel genetically engineered pathway for synthesis of poly(hydroxyalkanoic acids) in Escherichia coli. Appl. Environ. Microbiol. 66: 739-743 https://doi.org/10.1128/AEM.66.2.739-743.2000
  39. Madison, L. L. and G. W. Huisman. 1999. Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21- 53
  40. Maloy, S. R. and W. D. Nunn. 1981. Role of gene fadR in Escherichia coli acetate metabolism. J. Bacteriol. 148: 83-90
  41. Martin, D. P. and S. F. Williams. 2003. Medical applications of poly-4-hydroxybutyrate: A strong flexible absorbable biomaterial. Biochem. Eng. J. 16: 97- 105 https://doi.org/10.1016/S1369-703X(03)00040-8
  42. Matsusaki, H., H. Abe, and Y. Doi. 2000. Biosynthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp. 61-3. Biomacromolecules 1: 17- 22 https://doi.org/10.1021/bm9900040
  43. Matsusaki, H., H. Abe, K. Taguchi, T. Fukui, and Y. Doi. 2000. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant bacteria expressing the PHA synthase gene phaCl from Pseudomonas sp. 61-3. Appl. Microbiol. Biotechnol. 53: 401-419
  44. Park, S. J., W. S. Ahn, P. R. Green, and S. Y. Lee. 2001. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerateco-3-hydroxyhexanoate) by metabolically engineered Escherichia coli strains. Biotechnol. Bioeng. 74: 82- 87 https://doi.org/10.1002/bit.1097
  45. Peng, L. and K. Shimizu. 2003. Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement. Appl. Microbiol. Biotechnol. 61: 163- 178 https://doi.org/10.1007/s00253-002-1202-6
  46. Peoples, O. P. and A. J. Sinskey. 1989. $Poly-\beta-hydroxybutyrate$ biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (PhbC). J. Biol. Chem. 264: 15298- 15303
  47. Rhie, H. G. and D. Dennis. 1995. The function of ackA and pfa genes is necessary for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthesis in recombinant pha+ Escherichia coli. Can. J. Microbiol. 41(Suppl. 1): 200- 206 https://doi.org/10.1139/m95-188
  48. Schubert, P. A. Steinbuchel, and H. G. Schlegel. 1988. Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J. Bacteriol. 170: 5837- 5847 https://doi.org/10.1128/jb.170.12.5837-5847.1988
  49. Sendil, D., I. Gursel, D. L. Wise, and V. Hasirci. 1999. Antibiotic release from biodegradable PHBV microparticles. J. Contol. Rel. 59: 207- 217 https://doi.org/10.1016/S0168-3659(98)00195-3
  50. Sim, S. J., J. D. Snell, S. A. Hogan, J. Stubbe, C. Rha, and A. J. Sinskey. 1997. PHA synthase activity controls the molecular weight and polydispersity of polyhydroxybutyrate in vivo. Nature Biotech. 15: 63- 67 https://doi.org/10.1038/nbt0197-63
  51. Slater, S. C., T. Gallahera, and D. Dennis. 1992. Production of poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) in a recombinant Escherichia coli strain. Appl. Environ. Microbiol. 58: 1089- 1094
  52. Slater, S. C., W. H. Voige, and D. Dennis. 1988. Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 $Poly-\beta-hydroxybutyrate$ biosynthetic pathway. J. Bacteriol. 170: 4431- 4436 https://doi.org/10.1128/jb.170.10.4431-4436.1988
  53. Song, S., H. Silke, and A. Steinbiichel. 1999. Production of poly(4-hydroxybutyric acid) by fed-batch cultures of recombinant strains of Escherichia coli. Biotechnol. Lett. 21: 193-197 https://doi.org/10.1023/A:1005451810844
  54. Steinbiichel, A. and B. Fuchtenbusch. 1998. Bacterial and other biological systems for polyester production. Trends Biotechnol. 16: 419- 427 https://doi.org/10.1016/S0167-7799(98)01194-9
  55. Steinbuchel, A. and H. E. Valentin. 1995. Diversity of bacterial polyhydroxyalkanoic acid. FEMS Microbiol. Lett. 128: 219- 228 https://doi.org/10.1111/j.1574-6968.1995.tb07528.x
  56. Valentin, H. E. and D. Dennis. 1997. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. J. Biotechnol. 58: 33-38 https://doi.org/10.1016/S0168-1656(97)00127-2
  57. Valentin, H. E., T. A. Mitsky, D. A. Mahadeo, M. Tran, and K. J. Gruys. 2000. Application of a propionyl coenzyme A synthetase for poly(3-hydroxypropionate-co- 3-hydroxybutyrate) accumulation in recombinant Escherichia coli. Appl. Environ. Microbiol. 66: 5253- 5258 https://doi.org/10.1128/AEM.66.12.5253-5258.2000
  58. Valentin, H. E., S. Reiser, and K. J. Gruys. 2000. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) formation from gammaaminobutyrate and glutamate. Biotechnol. Bioeng. 67: 291-299 https://doi.org/10.1002/(SICI)1097-0290(20000205)67:3<291::AID-BIT5>3.0.CO;2-J
  59. Valentin, H. E., G. Zwingmann, A. Schonebaum, and A. Steinbiichel. 1995. Metabolic pathway for biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from 4-hydroxybutyrate by Alcaligenes eutrophus. Eur. J. Biochem. 227: 43-60 https://doi.org/10.1111/j.1432-1033.1995.tb20358.x
  60. van Wegen, R. J., S. Y. Lee, and A. P. J. Middelberg. 2001. Metabolic and kinetic analysis of poly(3-hydroxybutyrate) production by recombinant Escherichia coli. Biotechnol. Bioeng. 74: 70- 81 https://doi.org/10.1002/bit.1096
  61. Volova, T., E. Shishatskaya, V. Sevastianov, S. Efremov, and O. Mogilnaya. 2003. Results of biomedical investigations of PHB and PHB/PHV fibers. Biochem. Eng. J. 16: 125- 133 https://doi.org/10.1016/S1369-703X(03)00038-X
  62. Wang, F. and S. Y. Lee. 1997. Production of poly(3-hydroxybutyrate) by fed-batch culture of filarnentation-suppressed recombinant Escherichia coli. Appl. Environ. Microbiol. 63: 4765- 4769
  63. Williams, S. F., D. P. Martin, D. M. Horowitz, and O. P. Peoples. 1999. PHA application: Addressing the price performance issue I. Tissue engineering. Int. J. Biol. Macromol. 25: 111-121 https://doi.org/10.1016/S0141-8130(99)00022-7
  64. Wong, H. H., R. J. van Wegen, J. Choi, S. Y. Lee, and A. P. J. Middelberg. 1999. Metabolic analysis of poly(3-hydroxybutyrate) production by recombinant Escherichia coli. J. Microbiol. Biotechnol. 9: 593- 603
  65. Yagmurlu, M. E., F. Korkusz, I. Gursel, P. Korkusuz, U. Ors, and V. Hasirci. 1999. Sulbactam-cefoperazone polyhydroxybutyrateco-hydroxyvalerate (PHBV) local antibiotic delivery system: In vivo effectiveness and biocompatibility in the treatment of implant-related experimental osteomyelitis. J. Biomed. Mater. Res. 46: 494- 503 https://doi.org/10.1002/(SICI)1097-4636(19990915)46:4<494::AID-JBM7>3.0.CO;2-E
  66. Yim, K. S., S. Y. Lee, and H. N. Chang. 1996. Synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by recombinant Escherichia coli. Biotechnol. Bioeng. 49: 495- 503 https://doi.org/10.1002/(SICI)1097-0290(19960305)49:5<495::AID-BIT2>3.0.CO;2-E
  67. Yun, H. S., D. Y. Kim, C. W. Chung, H. W. Kim, Y. K. Yang, and Y. H. Rhee. 2003. Characterization of a tacky poly(3hydroxyalkanoate) produced by Pseudomonas chlororaphis HS21 from palm kernel oil. J. Microbiol. Biotechnol. 13: 64- 69
  68. Zhang, D. M., F. Z. Cui, Z. S. Luo, Y. B. Lin, K. Zhao, and G. Q. Chen. 2000. Wettability improvement of bacterial polyhydroxyalkanoates via ion implatation. Surf. Coat. Technol. 131: 350- 354 https://doi.org/10.1016/S0257-8972(00)00810-0
  69. Zhao, K., Y. Deng, and G. Q. Chen. 2003. Effects of surface morphology on the biocompatibility of polyhydroxyalkanoates. Biochem. Eng. J. 16: 115- 123 https://doi.org/10.1016/S1369-703X(03)00029-9
  70. Zinn, M., B. Witholt, and T. Egli. 2001. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv. Drug Deliv. Rev. 53: 5- 21 https://doi.org/10.1016/S0169-409X(01)00218-6