Modeling and Simulation of Simultaneous Saccharification and Fermentation of Paper Mill Sludge to Lactic Acid

  • LIN, JIAN-QIANG (State Key Lab of Microbial Technology, School of Life Science, Shandong University) ;
  • LEE, SANG-MOK (Department of Biological Engineering, ERC for Advanced Bioseparation Technology, Inha University) ;
  • KOO, YOON-MO (Department of Biological Engineering, ERC for Advanced Bioseparation Technology, Inha University)
  • Published : 2005.02.01

Abstract

Modeling and simulation for simultaneous saccharification and fermentation (SSF) process in bioconversion of paper mill sludge to lactic acid was carried out. The SSF process combined the enzymatic hydrolysis of paper mill sludge into glucose and the fermentation of glucose into lactic acid in one reactor. A mathematical modeling for cellulose hydrolysis was developed, based on the proposed mechanism of cellulase adsorption deactivation. Another model for simple lactic acid fermentation was also made. A whole mathematical model for SSF was developed by combining the above two models for cellulose hydrolysis and lactic acid fermentation. The characteristics of the SSF process were investigated using the mathematical model.

Keywords

References

  1. Abe, S. and M. Takagi. 1991. Simultaneous saccharification and fermentation of cellulose to lactic acid. Biotechnol. Bioeng. 37: 93- 96 https://doi.org/10.1002/bit.260370113
  2. Carrninal, G., J. Lopez Santin, and C. Sola. 1985. Kinetic modeling of the enzymatic hydrolysis of pretreated cellulose. Biotechnol. Bioeng. 27: 1282- 1290 https://doi.org/10.1002/bit.260270903
  3. Gonzalez, G., G. Carminal, C. Demas, and J. Lopez Santin. 1989. A kinetic model for pretreated wheat-straw saccharification by cellulase. J. Chem. Techn. Biotechnol. 44: 275-288 https://doi.org/10.1002/jctb.280440404
  4. Dawson, R. M. C., D. C. Elliott, W. H. Elliott, and K. M. Jones. 1986. Data for Biochemical Research, Third Ed. Clarendon Press, Oxford
  5. Ge, C. M., S. B. Gu, X. H. Zhou, J. M. Yao, R. R. Pan, and Z. L. Yu. 2004. Breeding of L(+)-lactic acid producing strain by low-energy ion implantation. J. Microbiol Biotechnol. 14: 363- 366
  6. Goldberg, D. E. 1989. Genetic Algorithm in Search, Optimization and Machine Learning Addison Wesley Publishing Co., U.S.A.
  7. Kaur, P. P., J. S. Arneja, and J. Singh. 1998. Enzymatic hydrolysis of rice straw by crude cellulase from Trichoderma reesei. Bioresourse Technol 66: 267- 269 https://doi.org/10.1016/S0960-8524(97)00138-7
  8. Koh, J. H., J. M. Kim, and H. J. Suh. 2003. Immune enhancing effect by orally-administered mixture of Saccharomyces cerevisiae and fermented rice bran. J. Microbiol. Biotechnol. 13: 196- 201
  9. Lee, I., B. R. Evans, and J. Woodward. 2000. The mechanism of cellulase action on cotton fibers: Evidence from atomic force microscopy. Ultramicroscopy 82: 213- 221 https://doi.org/10.1016/S0304-3991(99)00158-8
  10. Shoup, T. E. 1979. A Practical Guide to Computer Methods for Engineers. Prentice-Hall, Englewood Cliffs, N.J.
  11. Lee, S. M., J. Q. Lin, and Y. M. Koo. 2002. Chapter 10. Hydrolysis of paper mill sludge using mixed cellulose system: Enzymatic hydrolysis of paper sludge, pp. 121-138. In M. R. Marten, T. H. Park, and T. Nagamune (eds.), Biological Systems Engineering. Oxford Univ Press, England
  12. Lin, J. Q., S. M. Lee, H. J. Lee, and Y. M. Koo. 2000. Modeling of typical microbial cell growth in batch culture. Biotechnol. Bioprocess Eng. 5: 382- 385 https://doi.org/10.1007/BF02942217
  13. Lin, J. Q., S. M. Lee, and Y. M. Koo. 2001. Hydrolysis of paper mill sludge using an improved enzyme system. J. Microbiol. Biotechnol. 11: 362- 368
  14. Luedeking, R. and E. L. Piret. 1959. A kinetic study of the lactic acid fermentation. J. Biochem. Microbiol. 1: 393-412 https://doi.org/10.1002/jbmte.390010406
  15. Olmos-Dichara A., F. Arnpe, J. Uribelarrea, A. Pareilleux, and G. Goma. 1997. Growth and lactic acid production by Lactobacillus casei ssp. rhamnosus in batch and membrane bioreactor. Biotechnology Lett. 8: 709- 714 https://doi.org/10.1023/A:1018363520638
  16. Parajo, J. C., J. L. Alonso, and V. Santos. 1996. Development of a generalized phenomenological model describing the kinetics of the enzymatic hydrolysis of NaOH-treated pine wood. Appl. Biochem. Biotechnol. 56: 289- 299 https://doi.org/10.1007/BF02786959
  17. South, C. R., D. A. L. Hogsett, and L. R. Lynd. 1995. Modeling simultaneous saccharification and fermentation of lignocellulose to ethanol in batch and continuous reactors. Enzyme Microb. Technol. 17: 797-803 https://doi.org/10.1016/0141-0229(94)00016-K
  18. Yu, X., H. S. Yun, and Y. M. Koo. 1998. Production of cellulase by T. reesei Rut C30 in a batch fermentation. J. Microbiol. Biotechnol. 8: 575- 580
  19. Vickroy, T. B. 1985. Lactic acid, pp. 761-776. In Blanch, H. W., Drew, S. and Wang, D. J. C. (eds.), The Practice of Biotechnology: Commodity Products. Pergamon Press, Elmsford, NY, U.S.A.
  20. Youssef, C. B., V. Guillou, and A. Olmos-Dichara. 2000. Modelling and adaptive control strategy in a lactic acid fermentation process. Control Engineering Practice 8: 1297-1307 https://doi.org/10.1016/S0967-0661(00)00061-7